63 research outputs found

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Biologically inspired self-organization and node-level interference mitigation amongst multiple coexisting wireless body area networks

    Full text link
    © 2017 IEEE. This paper presents a node-level self-organizing interference avoidance scheme (SIAC) between multiple coexisting wireless body area networks (WBANs) that incorporates self-organization and smart spectrum allocation. It follows a biologically inspired approach based on the theory of pulse-coupled oscillators for self-organization. The proposed scheme makes three major contributions as compared to the current literature. Firstly, it considers node-level interference for internetwork interference mitigation rather than considering each WBAN as a whole. Secondly, it allocates synchronous and parallel transmission intervals for interference avoidance in an optimal manner and dynamically adapts to changes in their coexistence. Finally, it achieves collision-free, self-organized communication with only information of the firing signal of each WBAN and does not require a global coordinator to manage its communications. It operates on a nodes traffic priority, signal strength, and density of sensors in a WBAN. Simulation results show that our proposal achieves a fast convergence time despite the little information it receives. Moreover, SIAC is shown to be robust to variations in signal strength, number of coexisting WBANs and number of sensor nodes within each WBAN

    The Functioning of Ecosystems

    Get PDF
    The ecosystems present a great diversity worldwide and use various functionalities according to ecologic regions. In this new context of variability and climatic changes, these ecosystems undergo notable modifications amplified by domestic uses of which it was subjected to. Indeed the ecosystems render diverse services to humanity from their composition and structure but the tolerable levels are unknown. The preservation of these ecosystemic services needs a clear understanding of their complexity. The role of the research is not only to characterise the ecosystems but also to clearly define the tolerable usage levels. Their characterisation proves to be important not only for the local populations that use it but also for the conservation of biodiversity. Hence, the measurement, management and protection of ecosystems need innovative and diverse methods. For all these reasons, the aim of this book is to bring out a general view on the biogeochemical cycles, the ecological imprints, the mathematical models and theories applicable to many situations

    Human Enhancement Technologies and Our Merger with Machines

    Get PDF
    A cross-disciplinary approach is offered to consider the challenge of emerging technologies designed to enhance human bodies and minds. Perspectives from philosophy, ethics, law, and policy are applied to a wide variety of enhancements, including integration of technology within human bodies, as well as genetic, biological, and pharmacological modifications. Humans may be permanently or temporarily enhanced with artificial parts by manipulating (or reprogramming) human DNA and through other enhancement techniques (and combinations thereof). We are on the cusp of significantly modifying (and perhaps improving) the human ecosystem. This evolution necessitates a continuing effort to re-evaluate current laws and, if appropriate, to modify such laws or develop new laws that address enhancement technology. A legal, ethical, and policy response to current and future human enhancements should strive to protect the rights of all involved and to recognize the responsibilities of humans to other conscious and living beings, regardless of what they look like or what abilities they have (or lack). A potential ethical approach is outlined in which rights and responsibilities should be respected even if enhanced humans are perceived by non-enhanced (or less-enhanced) humans as “no longer human” at all

    Statistical physics of vaccination

    Get PDF
    Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination–one of the most important preventive measures of modern times–is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research

    Sustainability in design: now! Challenges and opportunities for design research, education and practice in the XXI century

    Get PDF
    Copyright @ 2010 Greenleaf PublicationsLeNS project funded by the Asia Link Programme, EuropeAid, European Commission

    Unmet goals of tracking: within-track heterogeneity of students' expectations for

    Get PDF
    Educational systems are often characterized by some form(s) of ability grouping, like tracking. Although substantial variation in the implementation of these practices exists, it is always the aim to improve teaching efficiency by creating homogeneous groups of students in terms of capabilities and performances as well as expected pathways. If students’ expected pathways (university, graduate school, or working) are in line with the goals of tracking, one might presume that these expectations are rather homogeneous within tracks and heterogeneous between tracks. In Flanders (the northern region of Belgium), the educational system consists of four tracks. Many students start out in the most prestigious, academic track. If they fail to gain the necessary credentials, they move to the less esteemed technical and vocational tracks. Therefore, the educational system has been called a 'cascade system'. We presume that this cascade system creates homogeneous expectations in the academic track, though heterogeneous expectations in the technical and vocational tracks. We use data from the International Study of City Youth (ISCY), gathered during the 2013-2014 school year from 2354 pupils of the tenth grade across 30 secondary schools in the city of Ghent, Flanders. Preliminary results suggest that the technical and vocational tracks show more heterogeneity in student’s expectations than the academic track. If tracking does not fulfill the desired goals in some tracks, tracking practices should be questioned as tracking occurs along social and ethnic lines, causing social inequality

    Measuring knowledge sharing processes through social network analysis within construction organisations

    Get PDF
    The construction industry is a knowledge intensive and information dependent industry. Organisations risk losing valuable knowledge, when the employees leave them. Therefore, construction organisations need to nurture opportunities to disseminate knowledge through strengthening knowledge-sharing networks. This study aimed at evaluating the formal and informal knowledge sharing methods in social networks within Australian construction organisations and identifying how knowledge sharing could be improved. Data were collected from two estimating teams in two case studies. The collected data through semi-structured interviews were analysed using UCINET, a Social Network Analysis (SNA) tool, and SNA measures. The findings revealed that one case study consisted of influencers, while the other demonstrated an optimal knowledge sharing structure in both formal and informal knowledge sharing methods. Social networks could vary based on the organisation as well as the individuals’ behaviour. Identifying networks with specific issues and taking steps to strengthen networks will enable to achieve optimum knowledge sharing processes. This research offers knowledge sharing good practices for construction organisations to optimise their knowledge sharing processes
    • 

    corecore