673 research outputs found

    Hydrogen Stark broadened Brackett lines

    Get PDF
    Stark broadened lines of the hydrogen Brackett series are computed for the conditions of stellar atmospheres and circumstellar envelopes. The computation is performed within the Model Microfield Method, which includes the ion dynamic effects and makes the bridge between the impact limit at low density and the static limit at high density and in the line wings. The computation gives the area normalized line shape, from the line core up to the static line wings.Comment: 13 pages - 7 figures, to be published in International Journal of Spectroscopy (IJS

    Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

    Full text link
    Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized version of Babai's nearest plane algorithm (i.e., successive interference cancelation (SIC)). To find the closest lattice point, Klein's algorithm is used to sample some lattice points and the closest among those samples is chosen. Lattice reduction increases the probability of finding the closest lattice point, and only needs to be run once during pre-processing. Further, the sampling can operate very efficiently in parallel. The technical contribution of this paper is two-fold: we analyze and optimize the decoding radius of sampling decoding resulting in better error performance than Klein's original algorithm, and propose a very efficient implementation of random rounding. Of particular interest is that a fixed gain in the decoding radius compared to Babai's decoding can be achieved at polynomial complexity. The proposed decoder is useful for moderate dimensions where sphere decoding becomes computationally intensive, while lattice reduction-aided decoding starts to suffer considerable loss. Simulation results demonstrate near-ML performance is achieved by a moderate number of samples, even if the dimension is as high as 32

    IRIS: A Generic Three-Dimensional Radiative Transfer Code

    Full text link
    We present IRIS, a new generic three-dimensional (3D) spectral radiative transfer code that generates synthetic spectra, or images. It can be used as a diagnostic tool for comparison with astrophysical observations or laboratory astrophysics experiments. We have developed a 3D short-characteristic solver that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise cubic, locally monotonic, interpolation technique that dramatically reduces the numerical diffusion effect. The code takes into account the velocity gradient effect resulting in gradual Doppler shifts of photon frequencies and subsequent alterations of spectral line profiles. It can also handle periodic boundary conditions. This first version of the code assumes Local Thermodynamic Equilibrium (LTE) and no scattering. The opacities and source functions are specified by the user. In the near future, the capabilities of IRIS will be extended to allow for non-LTE and scattering modeling. IRIS has been validated through a number of tests. We provide the results for the most relevant ones, in particular a searchlight beam test, a comparison with a 1D plane-parallel model, and a test of the velocity gradient effect. IRIS is a generic code to address a wide variety of astrophysical issues applied to different objects or structures, such as accretion shocks, jets in young stellar objects, stellar atmospheres, exoplanet atmospheres, accretion disks, rotating stellar winds, cosmological structures. It can also be applied to model laboratory astrophysics experiments, such as radiative shocks produced with high power lasers.Comment: accepted for publication in A&A; 17 pages, 9 figures, 2 table

    Gender homophily from spatial behavior in a primary school: a sociometric study

    Full text link
    We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily

    Worst-Case Hermite-Korkine-Zolotarev Reduced Lattice Bases

    Get PDF
    The Hermite-Korkine-Zolotarev reduction plays a central role in strong lattice reduction algorithms. By building upon a technique introduced by Ajtai, we show the existence of Hermite-Korkine-Zolotarev reduced bases that are arguably least reduced. We prove that for such bases, Kannan's algorithm solving the shortest lattice vector problem requires d^{\frac{d}{2\e}(1+o(1))} bit operations in dimension dd. This matches the best complexity upper bound known for this algorithm. These bases also provide lower bounds on Schnorr's constants αd\alpha_d and βd\beta_d that are essentially equal to the best upper bounds. Finally, we also show the existence of particularly bad bases for Schnorr's hierarchy of reductions

    Modelling of mercury isotope separation in CP stellar atmospheres: results and problems

    Full text link
    Formation of anomalous isotope abundances in the atmospheres of chemically peculiar (CP) stars can be explained by light-induced drift (LID). This effect is additional to the radiative acceleration and appears due to systematic asymmetry of radiative flux in partly overlapping isotopic spectral line profiles. LID causes levitation of an isotope with a red-shifted spectral line and sinking of an isotope with a blue-shifted line, generating thus diffusive separation of isotopes. We have studied diffusion of mercury as a typical well-studied isotope-rich heavy metal. Our model computations show that in mercury-rich quiescent atmospheres of CP stars LID causes levitation of the heavier mercury isotopes and sinking of the lighter ones. Precise quantitative modelling of the process of isotope separation demands very high-resolution computations and the high-precision input data, including data on hyperfine and isotopic splitting of spectral lines, adequate line profiles and impact cross-sections. Presence of microturbulence and weak stellar winds can essentially reduce the effect of radiative-driven diffusion.Comment: 8 pages, 4 figures. Manuscript accepted for publication in New Astronomy Reviews (proceedings of the 7th Serbian Conference on Spectral Line Shapes in Astrophysics, Zrenjanin, Serbia, June 15-19 2009

    Chiffrement avancé à partir du problème Learning With Errors

    Get PDF
    National audienceLe problèmeLearning With Errors (LWE) est algorithmiquement difficile pour des instances aléatoires. Il a été introduit par Oded Regev en 2005 et, depuis lors, il s'est avéré très utile pour construire des primitives cryptographiques, pour assurer la confidentialité de l'information. Dans ce chapitre, nous présenterons le problème LWE et illustrerons sa richesse, en décrivant des schémas de chiffrement avancés pouvant être prouvés au moins aussi sûrs que LWE est difficile. Nous rappellerons le concept fondamental de chiffrement, puis nous nous focaliserons sur les notions de chiffrement fondé sur l'identité et de chiffrement par attributs

    Analyse numérique et réduction de réseaux

    Get PDF
    29 pagesNational audienceL'algorithmique des réseaux euclidiens est un outil fréquemment utilisé en informatique et en mathématiques. Elle repose essentiellement sur la réduction LLL qu'il est donc important de rendre aussi efficace que possible. Une approche initiée par Schnorr consiste à effectuer des calculs approchés pour estimer les orthogonalisations de Gram-Schmidt sous-jacentes. Sans approximations, ces calculs dominent le coût de la réduction. Récemment, des outils classiques d'analyse numérique ont été revisités et améliorés, pour exploiter plus systématiquement l'idée de Schnorr et réduire les coûts. Nous décrivons ces développements, notamment comment l'algorithmique en nombres flottants peut être introduite à plusieurs niveaux dans la réduction

    Sanitization of FHE ciphertexts

    Get PDF
    By definition, fully homomorphic encryption (FHE) schemes support homomorphic decryption, and all known FHE constructions are bootstrapped from a Somewhat Homomorphic Encryption (SHE) scheme via this technique. Additionally, when a public key is provided, ciphertexts are also re-randomizable, e.g., by adding to them fresh encryptions of 0. From those two operations we devise an algorithm to sanitize a ciphertext, by making its distribution canonical. In particular, the distribution of the ciphertext does not depend on the circuit that led to it via homomorphic evaluation, thus providing circuit privacy in the honest-but-curious model. Unlike the previous approach based on noise flooding, our approach does not degrade much the security/efficiency trade-off of the underlying FHE. The technique can be applied to all lattice-based FHE proposed so far, without substantially affecting their concrete parameters

    Perturbation Analysis of the QR Factor R in the Context of LLL Lattice Basis Reduction

    Get PDF
    ... \ud computable notion of reduction of basis of a Euclidean lattice that is now commonly referred to as LLLreduction. The precise definition involves the R-factor of the QR factorisation of the basis matrix. A natural mean of speeding up the LLL reduction algorithm is to use a (floating-point) approximation to the R-factor. In the present article, we investigate the accuracy of the factor R of the QR factorisation of an LLL-reduced basis. The results we obtain should be very useful to devise LLL-type algorithms relying on floating-point approximations
    • …
    corecore