241 research outputs found

    Network Discovery by Generalized Random Walks

    Full text link
    We investigate network exploration by random walks defined via stationary and adaptive transition probabilities on large graphs. We derive an exact formula valid for arbitrary graphs and arbitrary walks with stationary transition probabilities (STP), for the average number of discovered edges as function of time. We show that for STP walks site and edge exploration obey the same scaling ∼nλ\sim n^{\lambda} as function of time nn. Therefore, edge exploration on graphs with many loops is always lagging compared to site exploration, the revealed graph being sparse until almost all nodes have been discovered. We then introduce the Edge Explorer Model, which presents a novel class of adaptive walks, that perform faithful network discovery even on dense networks.Comment: 23 pages, 7 figure

    A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs

    Full text link
    One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studies cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to design an MCMC algorithm to find random realizations of prescribed directed degree sequences.Comment: 11 pages, 1 figure submitted to "The Electronic Journal of Combinatorics

    Competition in Social Networks: Emergence of a Scale-free Leadership Structure and Collective Efficiency

    Full text link
    Using the minority game as a model for competition dynamics, we investigate the effects of inter-agent communications on the global evolution of the dynamics of a society characterized by competition for limited resources. The agents communicate across a social network with small-world character that forms the static substrate of a second network, the influence network, which is dynamically coupled to the evolution of the game. The influence network is a directed network, defined by the inter-agent communication links on the substrate along which communicated information is acted upon. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a robust leadership structure that is scale-free. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.Comment: 4 pages, 2 postscript figures include
    • …
    corecore