5,582 research outputs found

    Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics

    Full text link
    We present simulations of evacuation processes using a recently introduced cellular automaton model for pedestrian dynamics. This model applies a bionics approach to describe the interaction between the pedestrians using ideas from chemotaxis. Here we study a rather simple situation, namely the evacuation from a large room with one or two doors. It is shown that the variation of the model parameters allows to describe different types of behaviour, from regular to panic. We find a non-monotonic dependence of the evacuation times on the coupling constants. These times depend on the strength of the herding behaviour, with minimal evacuation times for some intermediate values of the couplings, i.e. a proper combination of herding and use of knowledge about the shortest way to the exit.Comment: 19 pages, 13 pictures, accepted for publication in Physica

    Inefficient emergent oscillations in intersecting driven many-particle flows

    Full text link
    Oscillatory flow patterns have been observed in many different driven many-particle systems. The conventional assumption is that the reason for emergent oscillations in opposing flows is an increased efficiency (throughput). In this contribution, however, we will study intersecting pedestrian and vehicle flows as an example for inefficient emergent oscillations. In the coupled vehicle-pedestrian delay problem, oscillating pedestrian and vehicle flows form when pedestrians cross the street with a small time gap to approaching cars, while both pedestrians and vehicles benefit, when they keep some overcritical time gap. That is, when the safety time gap of pedestrians is increased, the average delay time of pedestrians decreases and the vehicle flow goes up. This may be interpreted as a slower-is-faster effect. The underlying mechanism of this effect is explained in detail.Comment: For related publications see http://www.helbing.or

    A Contracted Path Integral Solution of the Discrete Master Equation

    Full text link
    A new representation of the exact time dependent solution of the discrete master equation is derived. This representation can be considered as contraction of the path integral solution of Haken. It allows the calculation of the probability distribution of the occurence time for each path and is suitable as basis of new computational solution methods.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Accelerating Scientific Discovery by Formulating Grand Scientific Challenges

    Get PDF
    One important question for science and society is how to best promote scientific progress. Inspired by the great success of Hilbert's famous set of problems, the FuturICT project tries to stimulate and focus the efforts of many scientists by formulating Grand Challenges, i.e. a set of fundamental, relevant and hardly solvable scientific questions.Comment: To appear in EPJ Special Topics. For related work see http://www.futurict.eu and http://www.soms.ethz.c

    Basics of Modelling the Pedestrian Flow

    Full text link
    For the modelling of pedestrian dynamics we treat persons as self-driven objects moving in a continuous space. On the basis of a modified social force model we qualitatively analyze the influence of various approaches for the interaction between the pedestrians on the resulting velocity-density relation. To focus on the role of the required space and remote force we choose a one-dimensional model for this investigation. For those densities, where in two dimensions also passing is no longer possible and the mean value of the velocity depends primarily on the interaction, we obtain the following result: If the model increases the required space of a person with increasing current velocity, the reproduction of the typical form of the fundamental diagram is possible. Furthermore we demonstrate the influence of the remote force on the velocity-density relation.Comment: 9 pages, 3 figures, Changes: Parameter e=0.51 corrected to e =0.07 (see Fig. 2) and prep. for subm. to Phys. Rev.

    Macroscopic Dynamics of Multi-Lane Traffic

    Full text link
    We present a macroscopic model of mixed multi-lane freeway traffic that can be easily calibrated to empirical traffic data, as is shown for Dutch highway data. The model is derived from a gas-kinetic level of description, including effects of vehicular space requirements and velocity correlations between successive vehicles. We also give a derivation of the lane-changing rates. The resulting dynamic velocity equations contain non-local and anisotropic interaction terms which allow a robust and efficient numerical simulation of multi-lane traffic. As demonstrated by various examples, this facilitates the investigation of synchronization patterns among lanes and effects of on-ramps, off-ramps, lane closures, or accidents.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm
    corecore