110 research outputs found

    MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Get PDF
    Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate

    Serological Survey of Retrovirus and Coronavirus Infections, including SARS-CoV-2, in Rural Stray Cats in The Netherlands, 2020–2022

    Get PDF
    Stray cats can host (zoonotic) viral pathogens and act as a source of infection for domestic cats or humans. In this cross-sectional (sero)prevalence study, sera from 580 stray cats living in 56 different cat groups in rural areas in The Netherlands were collected from October 2020 to July 2022. These were used to investigate the prevalence of the cat-specific feline leukemia virus (FeLV, n = 580), the seroprevalence of the cat-specific feline viruses feline immunodeficiency virus (FIV, n = 580) and feline coronavirus (FCoV, n = 407), and the zoonotic virus severe acute respiratory coronavirus-2 (SARS-CoV-2, n = 407) using enzyme-linked immunosorbent assays (ELISAs). ELISA-positive results were confirmed using Western blot (FIV) or pseudovirus neutralization test (SARS-CoV-2). The FIV seroprevalence was 5.0% (95% CI (Confidence Interval) 3.4–7.1) and ranged from 0–19.0% among groups. FIV-specific antibodies were more often detected in male cats, cats ≥ 3 years and cats with reported health problems. No FeLV-positive cats were found (95% CI 0.0–0.6). The FCoV seroprevalence was 33.7% (95% CI 29.1–38.5) and ranged from 4.7–85.7% among groups. FCoV-specific antibodies were more often detected in cats ≥ 3 years, cats with reported health problems and cats living in industrial areas or countryside residences compared to cats living at holiday parks or campsites. SARS-CoV-2 antibodies against the subunit 1 (S1) and receptor binding domain (RBD) protein were detected in 2.7% (95% CI 1.4–4.8) of stray cats, but sera were negative in the pseudovirus neutralization test and therefore were considered SARS-CoV-2 suspected. Our findings suggest that rural stray cats in The Netherlands can be a source of FIV and FCoV, indicating a potential risk for transmission to other cats, while the risk for FeLV is low. However, suspected SARS-CoV-2 infections in these cats were uncommon. We found no evidence of SARS-CoV-2 cat-to-cat spread in the studied stray cat groups and consider the likelihood of spillover to humans as low

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore