25 research outputs found

    Characterization of Novel and Uncharacterized p53 SNPs in the Chinese Population – Intron 2 SNP Co-Segregates with the Common Codon 72 Polymorphism

    Get PDF
    Multiple single nucleotide polymorphisms (SNPs) have been identified in the tumor suppressor gene p53, though the relevance of many of them is unclear. Some of them are also differentially distributed in various ethnic populations, suggesting selective functionality. We have therefore sequenced all exons and flanking regions of p53 from the Singaporean Chinese population and report here the characterization of some novel and uncharacterized SNPs - four in intron 1 (nucleotide positions 8759/10361/10506/11130), three in intron 3 (11968/11969/11974) and two in the 3′UTR (19168/19514). Allelic frequencies were determined for all these and some known SNPs, and were compared in a limited scale to leukemia and lung cancer patient samples. Intron 2 (11827) and 7 (14181/14201) SNPs were found to have a high minor allele frequency of between 26–47%, in contrast to the lower frequencies found in the US population, but similar in trend to the codon 72 polymorphism (SNP12139) that shows a distribution pattern correlative with latitude. Several of the SNPs were linked, such as those in introns 1, 3 and 7. Most interestingly, we noticed the co-segregation of the intron 2 and the codon 72 SNPs, the latter which has been shown to be expressed in an allele-specific manner, suggesting possible regulatory cross-talk. Association analysis indicated that the T/G alleles in both the co-segregating intron 7 SNPs and a 4tagSNP haplotype was strongly associated increased susceptibility to lung cancer in non-smoker females [OR: 1.97 (1.32, 3.394)]. These data together demonstrate high SNP diversity in p53 gene between different populations, highlighting ethnicity-based differences, and their association with cancer risk

    Genetic polymorphisms of MDM2 and TP53 genes are associated with risk of nasopharyngeal carcinoma in a Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor suppressor TP53 and its negative regulator MDM2 play crucial roles in carcinogenesis. Previous case-control studies also revealed <it>TP53 </it>72Arg>Pro and <it>MDM2 </it>309T>G polymorphisms contribute to the risk of common cancers. However, the relationship between these two functional polymorphisms and nasopharyngeal carcinoma (NPC) susceptibility has not been explored.</p> <p>Methods</p> <p>In this study, we performed a case-control study between 522 NPC patients and 722 healthy controls in a Chinese population by using PCR-RFLP.</p> <p>Results</p> <p>We found an increased NPC risk associated with the <it>MDM2 </it>GG (odds ratio [OR] = 2.83, 95% confidence interval [CI] = 2.08-3.96) and TG (OR = 1.49, 95% CI = 1.16-2.06) genotypes. An increased risk was also associated with the <it>TP53 </it>Pro/Pro genotype (OR = 2.22, 95% CI = 1.58-3.10) compared to the Arg/Arg genotype. The gene-gene interaction of <it>MDM2 </it>and <it>TP53 </it>polymorphisms increased adult NPC risk in a more than multiplicative manner (OR for the presence of both <it>MDM2 </it>GG and <it>TP53 </it>Pro/Pro genotypes = 7.75, 95% CI = 3.53-17.58).</p> <p>Conclusion</p> <p>The findings suggest that polymorphisms of <it>MDM2 </it>and <it>TP53 </it>genes may be genetic modifier for developing NPC.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore