12 research outputs found

    Visible-light activation of Ti02 photocatalysts: advances in theory and experiments

    Get PDF
    The remarkable achievement by Fujishima and Honda (1972) in the photo-electrochemical water splitting\ud results in the extensive use of TiO2 nanomaterials for environmental purification and energy\ud storage/conversion applications. Though there are many advantages for the TiO2 compared to other\ud semiconductor photocatalysts, its band gap of 3.2 eV restrains application to the UV-region of the electromagnetic\ud spectrum ( \ud ≤\ud 387.5 nm). As a result, development of visible-light active titanium dioxide\ud is one of the key challenges in the field of semiconductor photocatalysis. In this review, advances in\ud the strategies for the visible light activation, origin of visible-light activity, and electronic structure of\ud various visible-light active TiO2 photocatalysts are discussed in detail. It has also been shown that if\ud appropriate models are used, the theoretical insights can successfully be employed to develop novel\ud catalysts to enhance the photocatalytic performance in the visible region. Recent developments in theory\ud and experiments in visible-light induced water splitting, degradation of environmental pollutants,\ud water and air purification and antibacterial applications are also reviewed. Various strategies to identify\ud appropriate dopants for improved visible-light absorption and electron–hole separation to enhance the\ud photocatalytic activity are discussed in detail, and a number of recommendations are also presented

    EAACI Molecular Allergology User's Guide

    No full text
    none65siThe availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.restrictedMatricardi, P M; Kleine-Tebbe, J; Hoffmann, H J; Valenta, R; Hilger, C; Hofmaier, S; Aalberse, R C; Agache, I; Asero, R; Ballmer-Weber, B; Barber, D; Beyer, K; Biedermann, T; Bilò, M B; Blank, S; Bohle, B; Bosshard, P P; Breiteneder, H; Brough, H A; Caraballo, L; Caubet, J C; Crameri, R; Davies, J M; Douladiris, N; Ebisawa, M; EIgenmann, P A; Fernandez-Rivas, M; Ferreira, F; Gadermaier, G; Glatz, M; Hamilton, R G; Hawranek, T; Hellings, P; Hoffmann-Sommergruber, K; Jakob, T; Jappe, U; Jutel, M; Kamath, S D; Knol, E F; Korosec, P; Kuehn, A; Lack, G; Lopata, A L; Mäkelä, M; Morisset, M; Niederberger, V; Nowak-Węgrzyn, A H; Papadopoulos, N G; Pastorello, E A; Pauli, G; Platts-Mills, T; Posa, D; Poulsen, L K; Raulf, M; Sastre, J; Scala, E; Schmid, J M; Schmid-Grendelmeier, P; van Hage, M; van Ree, R; Vieths, S; Weber, R; Wickman, M; Muraro, A; Ollert, MMatricardi, P M; Kleine-Tebbe, J; Hoffmann, H J; Valenta, R; Hilger, C; Hofmaier, S; Aalberse, R C; Agache, I; Asero, R; Ballmer-Weber, B; Barber, D; Beyer, K; Biedermann, T; Bilò, M B; Blank, S; Bohle, B; Bosshard, P P; Breiteneder, H; Brough, H A; Caraballo, L; Caubet, J C; Crameri, R; Davies, J M; Douladiris, N; Ebisawa, M; Eigenmann, P A; Fernandez-Rivas, M; Ferreira, F; Gadermaier, G; Glatz, M; Hamilton, R G; Hawranek, T; Hellings, P; Hoffmann-Sommergruber, K; Jakob, T; Jappe, U; Jutel, M; Kamath, S D; Knol, E F; Korosec, P; Kuehn, A; Lack, G; Lopata, A L; Mäkelä, M; Morisset, M; Niederberger, V; Nowak-Węgrzyn, A H; Papadopoulos, N G; Pastorello, E A; Pauli', Gabriella; Platts-Mills, T; Posa, D; Poulsen, L K; Raulf, M; Sastre, J; Scala, E; Schmid, J M; Schmid-Grendelmeier, P; van Hage, M; van Ree, R; Vieths, S; Weber, R; Wickman, M; Muraro, A; Ollert,

    Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments

    No full text

    EAACI Molecular Allergology User's Guide

    No full text
    corecore