467 research outputs found

    Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin

    Get PDF
    Open Access via the OUP Agreement We thank Giuseppe Ianiri and Joe Heitman for their continuous support and many insightful discussions. Thanks to the Microscopy and Histology Facility at the Institute of Medical Sciences, University of Aberdeen, for sample processing and access to microscopes. Thanks to Dr. David Stead and the Aberdeen Proteomics Facility, University of Aberdeen for the proteomics analysis. Funding This project was funded by a Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology (097377/Z/11/Z). D.E.C.L., C.M,. and D.M. acknowledge funding from the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097 377/Z/11/Z. A.S. acknowledges, the Swedish Cancer and Allergy Fund.Peer reviewedPublisher PD

    Allergen-specific IgE over time in women before, during and after pregnancy

    Get PDF
    The trajectory of IgE levels before, during and after pregnancy in sensitized individuals is characterized by significant increase in specific IgE to birch allergens but not to other allergens after multiple testing. This increase may warrant some surveillance in the antenatal care for those with clinical symptoms.The Swedish Research CouncilThe Swedish initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework grant no 340-2013-5867Stockholm County Council (ALF-projects)The Strategic Research Program in Epidemiology at Karolinska InstitutetDepartment of Clinical Sciences at Danderyd HospitalSwedish Medical Research CouncilSwedish Heart-Lung FoundationSwedish Asthma and Allergy Association’s Research FoundationAccepte

    Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus

    Get PDF
    Apoptotic cells are considered to be a major source for autoantigens in autoimmune diseases such as systemic lupus erythematosus (SLE). In agreement with this, defective clearance of apoptotic cells has been shown to increase disease susceptibility. Still, little is known about how apoptotic cell–derived self-antigens activate autoreactive B cells and where this takes place. In this study, we find that apoptotic cells are taken up by specific scavenger receptors expressed on macrophages in the splenic marginal zone and that mice deficient in these receptors have a lower threshold for autoantibody responses. Furthermore, antibodies against scavenger receptors are found before the onset of clinical symptoms in SLE-prone mice, and they are also found in diagnosed SLE patients. Our findings describe a novel mechanism where autoantibodies toward scavenger receptors can alter the response to apoptotic cells, affect tolerance, and thus promote disease progression. Because the autoantibodies can be detected before onset of disease in mice, they could have predictive value as early indicators of SLE

    Epigenetic alterations in skin homing CD4+CLA+ T cells of atopic dermatitis patients

    Get PDF
    T cells expressing the cutaneous lymphocyte antigen (CLA) mediate pathogenic inflammation in atopic dermatitis (AD). The molecular alterations contributing to their dysregulation remain unclear. With the aim to elucidate putative altered pathways in AD we profiled DNA methylation levels and miRNA expression in sorted T cell populations (CD4+, CD4+CD45RA+ naïve, CD4+CLA+, and CD8+) from adult AD patients and healthy controls (HC). Skin homing CD4+CLA+ T cells from AD patients showed significant differences in DNA methylation in 40 genes compared to HC (p < 0.05). Reduced DNA methylation levels in the upstream region of the interleukin-13 gene (IL13) in CD4+CLA+ T cells from AD patients correlated with increased IL13 mRNA expression in these cells. Sixteen miRNAs showed differential expression in CD4+CLA+ T cells from AD patients targeting genes in 202 biological processes (p < 0.05). An integrated network analysis of miRNAs and CpG sites identified two communities of strongly interconnected regulatory elements with strong antagonistic behaviours that recapitulated the differences between AD patients and HC. Functional analysis of the genes linked to these communities revealed their association with key cytokine signaling pathways, MAP kinase signaling and protein ubiquitination. Our findings support that epigenetic mechanisms play a role in the pathogenesis of AD by affecting inflammatory signaling molecules in skin homing CD4+CLA+ T cells and uncover putative molecules participating in AD pathways. © 2020, The Author(s).Peer reviewe

    MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis?

    Get PDF
    MicroRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in health and disease. Psoriasis is the most prevalent chronic inflammatory skin disease in adults, with a substantial negative impact on the patients' quality of life. Here we show for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema. Among the psoriasis-specific microRNAs, we identified leukocyte-derived microRNAs and one keratinocyte-derived microRNA, miR-203. In a panel of 21 different human organs and tissues, miR-203 showed a highly skin-specific expression profile. Among the cellular constituents of the skin, it was exclusively expressed by keratinocytes. The up-regulation of miR-203 in psoriatic plaques was concurrent with the down-regulation of an evolutionary conserved target of miR-203, suppressor of cytokine signaling 3 (SOCS-3), which is involved in inflammatory responses and keratinocyte functions. Our results suggest that microRNA deregulation is involved in the pathogenesis of psoriasis and contributes to the dysfunction of the cross talk between resident and infiltrating cells. Taken together, a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases

    Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii

    Get PDF
    Background Single-walled carbon nanotubes (SWCNT) trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse) for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivobioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL) fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice

    Expression of Interferon-Gamma Receptors in Normal and Psoriatic Skin

    Get PDF
    Psoriatic keratinocytes have a reduced antiproliferative response to interferon (IFN)-gamma, and HLA-DR expression is usually not observed on keratinocytes in psoriatic plaques despite the presence of activated T cells. We have therefore compared the expression of IFN-gamma receptors in psoriatic skin with that of normal human skin. Using mouse monoclonal antibodies and immunoperoxidase staining on cryostat cut sections, we detected IFN-gamma receptors on keratinocytes throughout the epidermal layers except stratum corneum in normal skin (n = 11). Biopsy specimens from involved psoriatic skin (n = 17) consistently showed a staining pattern that differed from that of normal skin in that only the lower part of epidermis reacted with the antibodies to IFN-gamma receptors, whereas the upper layers showed no or minimal staining. Expression of IFN-gamma receptors in uninvolved psoriatic skin (n = 16) did not differ from that of healthy controls. Forty-five percent of the biopsies from lesional psoriatic skin displayed ICAM-1 positive keratinocytes, and only two specimens had a limited expression of HLA-DR reactive keratinocytes. The decreased binding of antibodies against the IFN-gamma receptors in the upper part of psoriatic epidermis might be secondary to abnormal maturation of psoriatic keratinocytes or a primary defect involving abnormal modulation of IFN-gamma receptors

    Biological and genetic interaction between Tenascin C and Neuropeptide S receptor 1 in allergic diseases

    Get PDF
    Neuropeptide S receptor 1 (NPSR1, GPRA 154, GPRA) has been verified as a susceptibility gene for asthma and related phenotypes. The ligand for NPSR1, Neuropeptide S (NPS), activates signalling through NPSR1 and microarray analysis has identified Tenascin C (TNC) as a target gene of NPS-NPSR1 signalling. TNC has previously been implicated as a risk gene for asthma. We aimed therefore to study the genetic association of TNC in asthma- and allergy-related disorders as well as the biological and genetic interactions between NPSR1 and TNC. Regulation of TNC was investigated using NPS stimulated NPSR1 transfected cells. We genotyped 12 TNC SNPs in the cross-sectional PARSIFAL study (3113 children) and performed single SNP association, haplotype association and TNC and NPSR1 gene-gene interaction analyses. Our experimental results show NPS-dependent upregulation of TNC-mRNA. The genotyping results indicate single SNP and haplotype associations for several SNPs in TNC with the most significant association to rhinoconjunctivitis for a haplotype, with a frequency of 29% in cases (P = 0.0005). In asthma and atopic sensitization significant gene-gene interactions were found between TNC and NPSR1 SNPs, indicating that depending on the NPSR1 genotype, TNC can be associated with either an increased or a decreased risk of disease. We conclude that variations in TNC modifies, not only risk for asthma, but also for rhinoconjunctivitis. Furthermore, we show epistasis based on both a direct suggested regulatory effect and a genetic interaction between NPSR1 and TNC. These results suggest merging of previously independent pathways of importance in the development of asthma- and allergy-related trait

    DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life

    Get PDF
    DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.</p
    corecore