4,377 research outputs found

    Geostatistical modeling in the presence of interaction between the measuring instruments, with an application to the estimation of spatial market potentials

    Full text link
    This paper addresses the problem of recovering the spatial market potential of a retail product from spatially distributed sales data. In order to tackle the problem in a general way, the concept of spatial potential is introduced. The potential is concurrently measured at different spatial locations and the measurements are analyzed in order to recover the spatial potential. The measuring instruments used to collect the data interact with each other, that is, the measurement at a given spatial location is affected by the concurrent measurements at other locations. An approach based on a novel geostatistical model is developed. In particular, the model is able to handle both the measuring instrument interaction and the missing data. A model estimation procedure based on the expectation-maximization algorithm is provided as well as standard inferential tools. The model is applied to the estimation of the spatial market potential of a newspaper for the city of Bergamo, Italy. The estimated spatial market potential is eventually analyzed in order to identify the areas with the highest potential, to identify the areas where it is profitable to open additional newsstands and to evaluate the newspaper total market volume of the city.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS588 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A model based framework for air quality indices and population risk evaluation, with an application to the analysis of Scottish air quality data

    Get PDF
    The paper is devoted to the development of a statistical framework for air quality assessment at the country level and for the evaluation of the ambient population exposure and risk with respect to airborne pollutants. The framework is based on a multivariate space–time model and on aggregated indices defined at different levels of aggregation in space and time. The indices are evaluated, uncertainty included, by considering both the model outputs and the information on the population spatial distribution. The framework is applied to the analysis of air quality data for Scotland for 2009 referring to European and Scottish air quality legislation

    On the robustness of acoustic black hole spectra

    Full text link
    We study the robustness of the spectrum emitted by an acoustic black hole by considering series of stationary flows that become either subsonic or supersonic, i.e. when the horizon disappears. We work with the superluminal Bogoliubov dispersion of Bose--Einstein condensates. We find that the spectrum remains remarkably Planckian until the horizon disappears. When the flow is everywhere supersonic, new pair creation channels open. This will be the subject of a forthcoming work.Comment: 4 pages, 2 figure, jpconf.cls; to appear in the proceedings of the Spanish Relativity Meeting ERE201

    Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions

    Get PDF
    Exposure to high levels of air pollutant concentration is known to be associated with respiratory problems which can translate into higher morbidity and mortality rates. The link between air pollution and population health has mainly been assessed considering air quality and hospitalisation or mortality data. However, this approach limits the analysis to individuals characterised by severe conditions. In this paper we evaluate the link between air pollution and respiratory diseases using general practice drug prescriptions for chronic respiratory diseases, which allow to draw conclusions based on the general population. We propose a two-stage statistical approach: in the first stage we specify a space-time model to estimate the monthly NO2 concentration integrating several data sources characterised by different spatio-temporal resolution; in the second stage we link the concentration to the β2-agonists prescribed monthly by general practices in England and we model the prescription rates through a small area approach

    The analogue cosmological constant in Bose-Einstein condensates: a lesson for quantum gravity

    Full text link
    For almost a century, the cosmological constant has been a mysterious object, in relation to both its origin and its very small value. By using a Bose-Einstein condensate analogue model for gravitational dynamics, we address here the cosmological constant issue from an analogue gravity standpoint. Starting from the fundamental equations describing a system of condensed bosons, we highlight the presence of a vacuum source term for the analogue gravitational field, playing the role of a cosmological constant. In this simple system it is possible to compute from scratch the value of this constant, to compare it with other characteristic energy scales and hence address the problem of its magnitude within this framework, suggesting a different path for the solution of this longstanding puzzle. We find that, even though this constant term is related with quantum vacuum effects, it is not immediately related to the ground state energy of the condensate. On the gravity side this result suggests that the interpretation and computation of the cosmological term as a form of renormalized vacuum energy might be misleading, its origin being related to the mechanism that instead produces spacetime from its pregeometric progenitor, shedding a different light on the subject and at the same time suggesting a potentially relevant role of analogue models in the understanding of quantum gravity.Comment: 24 pages, 1 figure, Proceedings of the II Amazonian Symposium on Physic
    • …
    corecore