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Creep and Long-Term Properties of Alkali-Activated
Swedish-Slag Concrete

Abeer M. Humad, Ph.D.1; John L. Provis2; Karin Habermehl-Cwirzen, Ph.D.3;

Magdalena Rajczakowska4; and Andrzej Cwirzen5

Abstract: The construction of the future is moving in the direction of environmentally friendly materials and the use of various types of

industrial byproducts and wastes. The use of blast furnace slag (BFS) for the production of concrete is one of those alternatives. In this study,

pastes and concretes based on high-MgO BFS were alkali activated with 10% by weight sodium carbonate, sodium silicate, and a combi-

nation of both. Heat treatment and laboratory curing were applied. The results showed that heat treatment was effective at reducing the drying

shrinkage of alkali-activated slag concretes and promoting high early strength. However, the sodium carbonate–activated slag concrete spec-

imens showed a reduction in compressive strength at later ages. All concrete specimens tested exhibited high drying shrinkage; the highest

values were for sodium silicate–activated concretes and the lowest were for sodium carbonate–activated concretes. All concretes tested

showed very large creep, which was partly related to the small maximum aggregate size (8 mm) and the effects of carbonation. The

carbonation depth after 12–24 months was significantly smaller for the heat-treated specimens and for concrete activated with sodium silicate.

The carbonation process resulted in a more porous binder matrix, leading to long-term strength loss and increased creep, especially

for sodium silicate–activated mixes. DOI: 10.1061/(ASCE)MT.1943-5533.0003381. This work is made available under the terms of

the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Alkali-activated slag (AAS) concrete; Shrinkage; Creep of AAS; High-MgO slag; Carbonation.

Introduction

In the last few decades, the global community has shown increasing

interest in concretes based on alkali-activated cementitious binders

due to their identified environmental, economic, or technical advan-

tages. Alkali-activated binders can be produced from various indus-

trial byproducts, including blast furnace slag (BFS). The hardening

processes of alkali-activated BFS binders are to some extent similar

to the hydration of high-volume blended BFS/portland cement

(PC), but with the addition of a separate activator instead of using

PC to elevate the pH and initiate BFS hydration. One of the critical

parameters defining the alkali-activated binder solidification pro-

cess is the pH value of the solution, which is controlled by the

alkali activator type. Generally, alkali hydroxides and silicates

generate the highest pH values and the highest hydration temper-

ature buildup. Carbonates generate moderately alkaline conditions

and lower temperatures and produce free hydroxides through reac-

tion with calcium originating from BFS.
The main hydration product of alkali-activated slag (AAS) is a

low-calcium, Al-substituted calcium silicate hydrate (C–A–S–H)

gel, together with some or all of hydrotalcite, hydrogarnet, zeolites,

alumina, ferric oxide, monosulfate (AFm) phases, and ettringite,

depending on the nature of the activator (Wang and Scrivener 1995;

Chen and Brouwers 2007; Provis and Bernal 2014). The binding

gel contains a relatively high amount of uncombined water com-

pared with the gels formed by PC hydration, which can evaporate

during drying, causing considerable shrinkage and microcracking

of the binder matrix (Kutti 1992). The AAS concrete binder matrix

contains mostly mesopores, while in hydrated PC, capillary pores

predominate (Reddy and Tilak 2015). The amount of those pores

tends to increase with a higher dosage of alkali activator, leading to

greater shrinkage (Häkkinen 1993; Collins and Sanjayan 2000b;

Melo Neto et al. 2008). Finer porosity is related to an enhanced

hydration degree and greater formation of C–A–S–H phases

(Collins and Sanjayan 1999; Bakharev et al. 1999; Krizan and

Zivanovic 2002).
The porosity of the C–S–H type gel formed in an AAS matrix

has been identified as being higher than is observed in PC-based

mixes (Chen and Brouwers 2007). Slag concrete activated with so-

dium hydroxide showed the highest overall porosity, while sodium

carbonate (SC)-activated slag concrete had a porosity comparable

to that of PC concrete (Chen and Brouwers 2007). Dry curing in-

creased the porosity and permeability of AAS concrete (Shi et al.

2006). Alkali-activated concretes based on BFS are in some cases

characterized by a significantly larger shrinkage than PC-based sys-

tems (Collins and Sanjayan 1999, 2000a, b; Cartwright et al. 2015).

Shrinkage of AAS binders depends on the pore structure, character-

istics of the binding gel, the type and dosage of the alkali activator,
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the fineness of the BFS, the mixing process, and the curing regime,

including relative humidity (Collins and Sanjayan 1999, 2000a, b;

Provis et al. 2012; Ye and Radlińska 2016). The binder matrix of

AAS is homogeneous but has a finer pore system, which could
cause a higher shrinkage, (Melo Neto et al. 2008; Collins and
Sanjayan 2000b).

Both drying shrinkage and autogenous shrinkage have been

identified as important mechanisms in alkali-activated slags (Shi

et al. 2006; Melo Neto et al. 2008). Autogenous shrinkage of AAS

concretes has been observed to continue for a longer time and to

reach higher ultimate values than ordinary PC (Sakulich and Bentz

2013; Orosz et al. 2019). Drying shrinkage increased with an in-

creased dosage of alkali activator and with increased alkali modulus

Ms (SiO2=Na2O) of the sodium silicate (SS) activator (Melo Neto

et al. 2008; Aydin and Baradan 2012; Humad et al. 2019; Orosz

et al. 2019). Activation of BFS by either NaOH or Na2CO3 tends

to produce drying shrinkage of a similar magnitude to that of PC-

based materials (Wang and Scrivener 1995; Collins and Sanjayan

2000b). AAS mixes subjected to heat treatment that are activated

with SS with a higher Ms showed intensive cracking (Aydin and

Baradan 2012). Prolonged heat curing produced a more mature

binder matrix that had greater dimensional stability (Zheng

2010). Shrinkage in PC systems increases with decreasing relative

humidity (RH) (Hansen 1987), but conversely, concrete based on

AAS has been observed to contract more when exposed to a higher

RH, which was explained by the reorganization of the C–A–S–H

phase (Ye and Radlińska 2016).
The high drying shrinkage of AAS pastes was related to the struc-

tural incorporation of alkali cations in C–A–S–H, which could de-

crease the stacking regularity of C–A–S–H layers and cause their

collapse due to the effect of drying (Ye and Radlińska 2016).
Another phenomenon connected with shrinkage is creep,

which is defined as a long-term permanent deformation develop-

ing under application of a sustained load. The creep is, similarly to

shrinkage, affected by the microstructure of the binder matrix,

mechanical properties, aggregate type, and age at loading. The

published data related to the creep of alkali-activated materials

are rather limited, especially for AAS concrete. Alkali-activated

concrete based on a combination of fly ash and BFS showed a

lower creep than the comparable PC concrete when cured in am-

bient laboratory conditions, and a higher creep when sealed (Lee

2007), while the long-term creep of concretes based on AAS tends

to be higher in comparison with PC concretes (Ma and Dehn

2017). The creep response of C–S–H type phases is affected by

the Ca=Si ratio and the interlayer water. Micro-indentation tests

have shown that a lower Ca=Si ratio (0.6–1.5) in this type of phase

provided a lower contact creep modulus and led to higher creep

values (Zhang et al. 2014; Nguyen et al. 2014).
AAS concrete tends to show a higher strength loss upon car-

bonation and a greater carbonation depth compared with PC con-

crete (Bernal et al. 2011, 2012). The carbonation of SS-activated

slag caused loss of cohesion of the binder matrix, decreased

the compressive strength, and significantly increased the porosity

(Puertas et al. 2006; Ghahramani 2017). More recent work has

shown that the addition of calcined Mg-Al layered double hydrox-

ide particles can mitigate this drop in strength (Ke et al. 2016).

Owing to carbonation, the volume of permeable pores present in

the AAS concrete increases contains a higher percentage of cap-

illary pores (Shi et al. 2006; Bernal et al. 2015). Carbonation gen-

erated microcracking, which opened the pore system and induced

shrinkage (Shi et al. 2006).
The main focus of the research described in this paper was to

understand the parameters controlling strength, shrinkage, creep,

microstructure, and microchemistry of various types of AAS

concretes under long-term exposure and to fill the knowledge
gap, particularly in the creep behavior of AAS-based concrete.
The slag used to produce these concretes was a high-MgO product
from Sweden, which differs significantly in chemistry from most
European slag sources, which have a significantly lower MgO con-
tent, where the chemical composition of the binder previously has
been noted to play a significant role in controlling the reactivity and
the reaction products of this particular slag in a way that is not seen
in more conventional materials (Humad et al. 2019).

Experimental Setup

Materials

High-MgO-content BFS, type Merit 5000 (MEROX, Oxelösund,
Sweden) was used in this study. The chemical composition deter-
mined by a PANalytical-Zetium XRF spectrometer and the physical

properties of the slag are shown in Table 1. The mix proportions of
the concretes studied and compressive strength results are shown in
Table 2.

All concretes and pastes contained 450 kg=m3 of BFS. The
water-to-binder ratio (w=b) was 0.45 for all concrete mixes and
0.36 for pastes. Powdered SC provided by CEICH SA Poland,
and liquid SS provided by PQ Corporation were used as alkali
activators. The SS as-received had a modulus (Ms¼ SiO2=Na2O
as a mass ratio) of 2.2 with 34.37% by weight SiO2, 15.6% by
weight Na2O, and a solid content of 49.97% by weight. The Ms

was lowered to 1.0 for use in AAS mixes by an addition of sodium
hydroxide (SH) pellets from PQ Corp., 98% purity with 76.31%
by weight Na2O. No plasticizing admixture was used. The total
dosage of the solid part of the alkali activator was 10% by weight
of the binder weight; similar materials were used previously by
Humad et al. (2018). The Jehander Heidelberg Cement Group,
Sweden, provided granite aggregates. The total aggregate content
(0–8 mm) was 1,663 kg=m3 with 80% fine content and a specific
gravity of 2,700 kg=m3. Powdered SC and liquid SS were dissolved
into the mix water 24 h before the concretes were mixed. The mixing
procedure included 1 min mixing of all dry materials, the addition of
water with dissolved activators, followed bymixing for another 3 min
using a rotating pan mixer of the type Zyklos-ZZ75HE.

Test Procedures: Fresh Concrete

After mixing, the slump of the AAS concrete mixes was determined

following ASTM C143. The initial and final setting times of
the AAS pastes were determined following ASTM C191 using a

Table 1. Chemical composition and physical properties of ground granu-

lated blast furnace slag used

Component

Oxide

(% by weight) Physical property Value

CaO 30.4 Specific surface (cm2=g) 4,500

SiO2 35 Bulk density (kg=m3) 1,100

Al2O3 14.3 Specific gravity 2.95

Fe2O3 0.3 — —

MgO 16.1 — —

Na2O 0.6 — —

K2O 0.7 — —

TiO2 2.8 — —

MnO 0.5 — —

SO3 0.7 — —

Loss on ignition 0.9 — —
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Vicat apparatus. The specimens for compressive strength testing
were cast in alkali-resistant polymer 100-mm cube molds. Immedi-
ately after casting, the samples were sealed against evaporation
using plastic bags. Two types of curing procedures were applied:
(1) sealing of specimens and storage at 20°C� 2°C and 40%� 7%

RH until testing; and (2) specimens were sealed and heat cured at
65°C for 24 h, followed by storage (sealed) in lab conditions until
testing.

Test Procedures: Hardened Concrete

Compressive strength values were obtained as the average of three
100-mm cubes at 3, 7, 28, 180, and 360 days following the standard
SS-EN 12390-3 and using a Toni Technik compressive strength
machine. The loading rate was set to 10 N=s.

For drying shrinkage testing, three concrete cylinders with a
diameter of 100 mm and height of 200 mm were produced for
each mix. The specimens for drying shrinkage measurements were
sealed only until final setting (2–3 days) in lab conditions, or for
24 h (heat curing in oven), then kept unsealed in lab conditions.
The plastic foil wrapping the cylinder molds was removed when
the samples solidified and the drying shrinkage measurement could
be initiated.

For creep testing, six cylinders were made for each mix. Three
of these six replicates were not loaded but used for shrinkage mea-
surements, and the others were loaded for creep measurement. The
applied load was set to 40% of the 28-day compressive strength of
the cylinders (Table 2). The creep strains were determined by sub-
tracting the measured drying shrinkage strains on the nonloaded
specimens from the strains measured on the loaded specimens.

All samples were stored in laboratory conditions at a temperature
of 20°C� 2°C and 40%� 7% RH; the samples were sealed for
28 days, and then the sealing was removed. Strain values were
recorded using an electronic manual strain gauge, DEMEC type
(Mayes Instruments, Vansittart Estate, UK) (Fig. 1). Two pairs
of stainless-steel studs were glued with epoxy resin on the speci-
men surfaces to give a gauge length of 100 mm. The creep test rig
consisted of two steel plates connected with adjustable steel rods.
Cylinder surfaces were ground flat, and samples were placed in
stacks of three in the loading rig (Fig. 2). The load was applied
at the age of 28 days using a NIKE hydraulic jack with a maximum
oil pressure of 70 MPa. After the desired load was achieved, nuts on
the connecting threaded rods were locked. On the next day, the load
values were checked and adjusted. Creep and shrinkage values
were recorded every day for the first 2 months and every week for
the following 2 months. Later values were recorded once a month.
The shrinkage strain εsh value was calculated based on an average
value of six replicate readings following Eq. (1) [ACI Committee
209 (ACI 2008)]:

εsh ¼ 1=6
X

6

1

ðLi − L0Þ=L0 ð1Þ

where Li = measured distance between pair of gauge points in
micrometers; and L0 = initial distance between pair of gauge points
measured immediately after demolding.

Fig. 1. Strain gauge and specimens for drying shrinkage test. Fig. 2. Creep setup.

Table 2. Mix proportions and curing conditions

Mix ID

Binder

content

(kg=m3)

Total

w/b

ratio

Aggregate

content

(0–8)

(kg=m3)

Activator dosage as solid

material percent by

weight of binder

pH of

solution Curing condition

28-day fcu
MPa (cube)

28-day f 0
c MPa

(converted to

cylinder)

SC10 L 450 0.45 1,663 10% SC 11.23 Sealed lab cured in 20°C� 2°C

and 40%� 7% RH

48 38.4

SC10 H Sealed heat-cured in 65°C for 24 h 39 31.2

SS10 L 450 0.45 1,663 10% SS Ms ¼ 1 13.7 Sealed lab cured in 20°C� 2°C

and 40%� 7% RH

50 40

SS10 H Sealed heat cured in 65°C for 24 h 53 42.4

SC5þ SS5 L 450 0.45 1,663 5% SCþ 5% SS, Ms ¼ 1 13.33 Sealed lab cured in 20°C� 2°C

and 40%� 7% RH

47 37.6

SC5þ SS5 H Sealed heat cured 65°C for 24 h 49 39.2
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The actual creep εc values were calculated following ASTM
C512, where the drying and the autogenous shrinkage were ex-
tracted [Eq. (2)] [ACI Committee 209 (ACI 2008)]:

εc ¼ εt−εsh

¼ 1=6

�

X

6

1

½ðLi;t − L0;tÞ=L0;tÞ−
X

6

1

ðLi;sh − L0;shÞ=L0;shÞ�

�

ð2Þ

where εc = creep strain; εt = total strain including creep and shrink-
age; εsh = shrinkage strain; Li;t = distance measurement in creep
test; L0;t = initial distance measurement in creep test; Li;sh =
distance measured in shrinkage test; and L0;sh = initial distance
measured in shrinkage test.

The carbonation depth was determined after 12 and 24 months
of storing the shrinkage specimens (cylinders 100 × 200 mm)

under laboratory conditions (20°C� 2°C and 40%� 7% RH).
Phenolphthalein Deep Purple Indicator was sprayed onto the split
concrete surfaces. When the pH value exceeds 9.5, the indicator
changes the binder matrix color to dark magenta, while areas hav-
ing a pH of less than 9.5 retain a natural concrete color because the
indicator is colorless.

XRD analysis was conducted on 7- and 28-day-old powdered
paste samples using a PANalytical Empyrean XRD unit using Cu
Kα radiation, a step size of 0.0262°2θ, and a total scanning time
for each sample of 16 min. The raw data were evaluated using
HighScore Plus software. A scanning electron microscope (SEM)
type JSM-IT100 (JEOL) was used to study the microstructure of
24-month-old samples. Carbonated, semicarbonated, and noncar-
bonated areas were analyzed using a QUANTAX energy dispersive
X-ray spectrometer (EDX) produced by Bruker with ESPRIT
version 2 software. The samples for the SEM studies were impreg-
nated with resin and polished using progressively finer grades of a
diamond spray. The porosity was analyzed based on backscattered
electron BSE-SEM images using ImageJ software. To remove
the noise, a median filter with a two-pixel kernel was applied. Then
threshold sensitivity analysis was performed to segment the poros-
ity from the rest of the sample. The so-called overlay method was
applied according to the procedure of Wong et al. (2006a). The
method makes it possible to determine the upper gray-level thresh-
old of porosity based on the cumulative brightness histogram of
BSE images (Wong et al. 2006a, b; Yio et al. 2016). Based on the
aforementioned calculation, the global threshold values were esti-
mated for each image. Afterward, the images were binarized and
the porosity P was calculated as

P ¼
Ap

Atot

× 100% ð3Þ

where Ap = pore area in image (white pixel area in binary seg-
mented image); and Atot = total area of sample (sum of all pixels—
black and white).

Results and Discussion

Fresh State Properties

Fig. 3 shows the effect of activator type on workability and setting
times, as discussed in a previous publication (Humad et al. 2018),
and similar trends were also obtained by other researchers (Rajesh
et al. 2013). The final setting times of Mixes SS10, SC10, and

SC5þ SS5 were 27, 43, and 52 h, respectively. Previous studies
indicated that the presence of calcite CaCO3 tends to decrease

the viscosity and to elongate the setting time (Shi and Day

1995; Puertas et al. 2006; Bernal et al. 2015).

Hardened State Properties

Fig. 4 shows the compressive strength development of all mixes at

ages of 3, 7, 28, 180, and 365 days. The measured 3-day compres-

sive strength results were higher for the heat-cured specimens due

to a more extensive dissolution of the BFS and accelerated forma-

tion of binding phases. The 28-day-old SS- and SS/SC-activated

slag mixes showed higher compressive strength values than the

SC-activated mix, and the SS-activated mix showed the highest

strength values with both heat and ambient curing. Similar trends

have also been observed by others (Wang et al. 1994; Bakharev

et al. 1999; Humad et al. 2018), in connection with the higher

extent of reaction. Prolonged curing times tend to enhance the

strength development under ambient curing for SS activator owing

to the strongly alkaline pore solution, and a similar result was ob-

tained by others (Bernal 2016). However, after 6 months of sealed

curing, the mixes containing SC as activator (SC10, SC5 þ SS5)

showed a reduction in the compressive strength for both heat-

treated and non-heat-treated specimens (Fig. 4). A similar trend

was observed in PC pastes containing Na2CO3 (Janotka 2001)

and in heat-cured AAS concretes activated with SS (Bakharev et al.

1999). Decreasing the compressive strength in some AAS mortars

has also been observed by other researchers (Bernal 2016), and in

some cases the compressive strength stopped developing at about

90 days owing to a lack of moisture required for slag hydration

(Collins and Sanjayan 2001). Here, the concrete mixes activated

with SS and cured in both regimes (Mixes SS10 L, SS10H)

showed only a slight progression in compressive strength values

between 6 months and 1 year, but no decrease. The densities of the

AAS concretes ranged between 2,220 and 2,300 kg=m3, and the

modulus of elasticity calculated at 28 days increased consistently

at higher compressive strengths (Table 3).
The drying shrinkage values measured after 1, 3, 6, and

12 months are also shown in Table 3. The AAS concretes showed

rather high values in comparison with the body of literature data

for PC concretes, consistent with earlier results (Häkkinen 1993;

Collins and Sanjayan 2000a; Reddy and Tilak 2015; Ye and

Radlińska 2016). The majority of the heat-cured specimens had a

Fig. 3. Initial and final setting time of AAS pastes with slump test

results.
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lower ultimate measured drying shrinkage, mostly because a sig-

nificant part of the shrinkage is likely to have developed during the

first 24 h after casting (24 h, 65°C in an oven) before the start of

measurement. Additionally, between the first and third months the

measured shrinkage was more than double in the heat-cured versus

the lab-cured samples. These results could be related to the higher

amount of crystalline phases produced at higher temperature, as

revealed in the XRD analysis (Fig. 5). Increasing the amount

of crystalline phases due to that increased temperature accelerates

the densification of the solid phases within the binder, which leads

to a more porous microstructure (Shi et al. 2006). The higher initial

rate of hydration tends to retard the next steps in the reaction pro-

cess as dense reaction products block the availability of slag grain

surface for future dissolution, creating a nonuniform distribution of

the hydration products and more porous microstructure (Helmuth

and Verbeck 1968; Shi et al. 2006). In SC-activated slag pastes

more calcite and less gaylussite (Ga) and hydrotalcite-group min-

erals (HT) were also detected in the heat-cured samples than in the

lab-cured one (Fig. 5).
Considering the development of shrinkage over time, 80%–

90% of the 1-year shrinkage values were developed during the

first 28 days in the case of the non-heat-treated samples, while

it took 4 months for the heat-cured specimens to develop the

same percentage of their 12-month shrinkage. For comparison,

in a typical PC concrete containing 80% by volume of aggregates,

having a water-to-cement (w=c) ratio of 0.45 and stored at a RH

between 40% and 45% the drying shrinkage values would be

0.5–1.2 mm=m after 1 year (Neville and Brooks 2010). All of

the AAS concrete specimens produced in this study, heat-cured

and non-heat-cured, showed higher drying shrinkage values than

this (1.81–3.48 mm=m). This higher drying shrinkage of the AAS

has been linked by other researchers to the structural incorporation

of alkali cations in C–A–S–H, which caused the collapse of

C–A–S–H layers under drying conditions (Ye and Radlińska

2016), also altering the binder matrix microstructure (Ismail et al.

2013). Typically, AAS contains a larger amount of mesopores than

PC concrete, leading to the generation of higher tensile forces dur-

ing drying, which leads to a higher shrinkage (Häkkinen 1993;

Collins and Sanjayan 2000a). The small maximum aggregate size

(8 mm) used in these concretes may also be a contributing factor, as

is the high binder content of 450 kg=m3 (Table 2), particularly

when considering that the BFS used here is less dense than PC,

Fig. 4. Progression of compressive strength of cubes during 1 year.

Table 3. Mechanical properties of concretes

Mix ID

ρ

(kg=m3)

Ec of

cylinder

(GPa)

Creep results

Drying shrinkage values (mm=m)

at different ages

Carbonation

depth (mm)

Sustained load

(40% of 28-day f 0
c)

MPa

Instantaneous

creep strain

(mm=m) 1 month 3 month 6 month 1 year 1 year 2 year

SC10 L 2,250 28.7 15.36 0.872 1.81 1.85 1.88 1.95 x xx

SC10 H 2,296 27.9 12.48 1.048 0.62 1.56 1.78 1.81 21.3 x

SS10 L 2,278 29.8 16.00 1.349 3.06 3.34 3.41 3.48 26.3 34.0

SS10 H 2,221 28.9 16.96 1.704 0.97 2.22 3.28 3.35 13.0 19.8

SC5þ SS5 L 2,233 28.1 15.04 1.043 2.58 2.94 3.06 3.18 31.8 38.8

SC5þ SS5 H 2,262 29.2 15.68 1.033 0.66 1.40 1.85 2.01 20.0 21.5

Note: ρ = density of concrete at 28 days; Ec = static modulus of elasticity of cylinder at 28 days, Ec ¼ 1.7ρ2f0.33c × 10−6 according to BS 8110-2:1985; x = full

area (cross section of cylinder 100 × 200 mm) semicarbonated; and xx = full area carbonated.
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so the high binder content on a mass basis becomes particularly

notable if converted to a volume basis.
The measured creep values after subtraction of the drying

shrinkage are shown in Fig. 6. The instantaneous creep strain

(initial strain) was measured immediately after the application of

the compression load (Table 3). In addition, creep coefficients and

specific creep values were calculated and are shown in Figs. 7

and 8. The creep coefficient was calculated as the ratio of the

ultimate creep strain (total creep strain minus drying shrinkage

strain) to the initial strain, while the specific creep is the ratio of

the creep strain (total creep strain minus drying shrinkage strain

minus initial strain) per unit stress [ACI Committee 209 (ACI

2005)]. All concretes activated with SS, which, as described ear-

lier, had the highest drying shrinkage, showed the lowest creep

and creep coefficient and the lowest specific creep but the highest

instantaneous creep strain. The measured creep values were higher

for the heat-treated samples compared with ambient-cured ones,

especially for the SS-activated mix (Fig. 6). Similar results were

obtained previously for both alkali-activated fly ash concrete and

PC concretes (Neville and Brooks 2010; Collins and Sanjayan

1999; Bazant and Li 2008, Wallah and Rangan 2006).
The calculated creep coefficients were nearly identical for heat-

treated and non-heat-treated concretes when SS and the combina-

tion of SS and SC were used as activators. From these coefficients,

the creep strain was approximately two times greater than the initial

strain in SS-activated concretes and nine times greater than the ini-

tial strain when the combined SS–SC activator was used. Despite

the similar 28-day compressive strength values measured for

laboratory- and heat-cured mixes, excluding mixes activated with

SC, the heat-cured samples showed a higher instantaneous creep

(initial strain). This can be related to the more porous binder matrix

formed in heat-cured samples. On the other hand, the lab-cured

concrete activated with 10% SC showed a higher creep coefficient

than the comparable heat-cured samples. The calculated specific

Fig. 5. XRD results for 7- and 28-day cured AAS pastes. Suffixes L7D and L28D denote 7 and 28 days of lab curing, respectively, whereasH7D and

H28D denote 7 and 28 days of heat curing, respectively.
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creep, which takes into account the compressive strength of the

concrete when load is applied (the converted strength to cylinder),

was higher for heat-cured samples (Fig. 8). The highest ultimate

specific creep was calculated for SC-activated heat-cured concrete.

All results can be directly linked to the compressive strength at

28 days, where the mix with a high compressive strength showed

a low creep value. In the case of lab-cured mixes activated with

10% SS (Mix SS10L) 90% of the measured creep in 24 months

developed during the first 55 days, and 230 days for the heat-cured

samples (Mix SS10H). Concretes activated by 10% SC, which

showed higher creep, achieved 90% of the ultimate measured creep

after about 130 days for both curing types (Mixes SC10L and

SC10H). Mixes activated with the combination of SS–SC, for both

curing types (Mixes SC5þ SS5 L and SC5þ SS5 H), developed

90% of the total creep after about 160 and 220 days, respectively.

All observed trends related to creep can be linked to the microstruc-

ture of the binder matrix. Investigation of the concretes by SEM

showed significant microcracking (cracks filled with resin), as well

as coarsening of the porosity caused by carbonation, and the extent

of these effects differed between the various concrete mixes used

in the present study. The heat treatment produced a bright rim of

hydration product deposited on the surface of the partially hydrated

slag particles. Conversely, in lab-cured samples, at later ages, the

hydration product deposited was darker in grayscale value (i.e., had

a lower atomic number density), especially in the AAS mix con-

taining SS as the activator.

Fig. 6. Creep strain of laboratory- and heat-cured specimens. (Reprinted with permission from Humad 2019.)

Fig. 7. Creep coefficient of ambient and heat-cured concrete specimens, calculated by dividing creep by instantaneous creep. (Reprinted with

permission from Humad 2019.)
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High creep values were related to the microcracking evident in

the binder matrix (Figs. 9–11). Furthermore, after storing the AAS

concrete cylinders in the lab environment (20°C� 2°C and 40%�
7% RH), the specimens showed a significant degree of carbonation.

Carbonation of AAS concrete is caused by the reaction between

CO2 from the air and the alkaline Na2O in the pore solution, which

causes uptake of carbonate or bicarbonate anions by the decalcifi-

cation of the C–S–H (Bakharev et al. 2001). The carbonation

depths determined by application of phenolphthalein indicator to

12- and 24-month-old samples increased with time (Table 3 and

Figs. 9–12). Sealing with plastic bags provided rather good protec-

tion against carbonation (Fig. 13). The 24-month-old concretes

Fig. 8. Specific creep of ambient and heat-cured concrete specimens (specific creep, defined as creep strain per unit stress). (Reprinted with

permission from Humad 2019.)

Fig. 9. Carbonation test with phenolphthalein of concrete mixes activated with 10% by weight SC, concrete samples 100 mm in diameter: (a) lab-

cured SC10L; (b) heat-cured SC10H; (c) and (d) SEM-BSE images of carbonated region after storage in laboratory environment (20°C� 2°C and

40%� 7% RH) for 24 months for SC10L and SC10H, respectively.
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activated with 10% SC, under both curing regimes, showed carbon-
ated and semicarbonated regions with highly cracked areas (Fig. 9).
A higher porosity of the binder matrix in the carbonated region was
observed in Mixes SS10H and SC5+SS5H [Figs. 10(b) and 11(b)].

The calculated total porosity based on segmentation of SEM im-
ages is shown in Table 4. The differences can be directly related
to the formation of secondary products, which in the case of con-
cretes based on high-MgO slag are likely to include calcite CaCO3,

huntite CaMg3ðCO3Þ4 natron Na2CO3 · 10H2O, thermonatrite

Na2CO3 · H2O, and gaylussite Na2CaðCO3Þ2 · 5H2O, which have
been identified as carbonation products of the various binding
phases present in AAS paste (Bernal et al. 2014). Alkali-activated
high-MgO slag was reported by others to have a lower carbon-

ation depth than others slags with low MgO content (Bernal et al.
2015). The trend was associated to the absorption of CO2 by the
hydrotalcite-type minerals present, which hindered the process of
carbonation of the C–A–S–H (Bernal et al. 2015). In the present

study, EDX analysis showed that noncarbonated regions of the

Fig. 10. Carbonation test with phenolphthalein of concrete mixes activated with 10% by weight SS, concrete samples 100 mm in diameter: (a) lab-

cured SS10L; and (b) heat-cured SS10H, (C1, 2) and (D1,2) SEM-BSE images of the carbonated region after storage in laboratory environment

(20°C� 2°C and 40%� 7% RH) for 24 months for SS10L and SS10H, respectively.
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28-day-old AAS concrete contained O, C, Ca, Si, and Al and small

amounts of Na and Mg. In contrast, the carbonated regions had

lower amounts of Ca, Si, Al, O, Na, and Mg but significantly in-

creased the amount of carbon, which is consistent with the forma-

tion of calcium carbonate. The formation of calcium carbonate was

also confirmed by an increased Al=Ca ratio and a decreased Si/Ca

ratio observed in the carbonated matrices (Fig. 14). Carbonated

C–S–H is also identified as weaker, resulting in a higher creep, sim-

ilar to the results obtained by others (Zhang et al. 2014; Nguyen

et al. 2014). Concrete with higher Si=Ca and Al=Ca ratios showed
higher creep, similar to the results observed by Nguyen et al. (2014)

when the creep was measured with micro- and nanoindentation.

The heat-curing procedure appeared to limit the carbonation

(Figs. 10–13). Carbonated regions showed a higher extent of

deterioration of the microstructure (Table 4 and Fig. 15).
Significantly lower creep strains and creep coefficients than

those presented here have been measured for other types of

concretes, including high-volume fly ash PC concretes and

alkali-activated concretes based on fly ash (Malhotra and Mehta

2002; Wallah and Rangan 2006). The lower creep values of

alkali-activated fly ash concretes were related to what those au-

thors called a block-polymerization concept that assumes only

Fig. 11. Carbonation test with phenolphthalein of concrete mixes activated with 5% by weight SCþ 5% by weight SS, concrete samples 100 mm in

diameter: (a) lab-cured SC10L; and (b) heat-cured SC10H, C1 and C2, and D1 and D2 SEM-BSE images of the carbonated region after storage

in laboratory environment (20°C� 2°C and 40%� 7% RH) for 24 months for SC5þ SS5 L and SC5þ SS5 H, respectively. (Reprinted with

permission from Humad 2019.)
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partial dissolution of silicon and aluminum from fly ash. Conse-

quently, remnant fly ash particles could act as microaggregates

and, thus, reinforce the binder matrix (Pacheco-Torgal 2014).

However, this concept does not appear to be valid in the case

of alkali-activated systems based on slag, which may be related

to the irregular/nonspherical shape of slag particles or differences

in the binder microstructure between the C–A–S–H–based binders

in AAS and the low-Ca alkali aluminosilicate (N–A–S–H) gels

that form in alkali-activated fly ash concretes. In addition, the

cracked microstructure (only cracks filled with resin, ignoring

cracks formed owing to a SEM vacuum) and a maximum aggre-

gate size of only 8 mm could contribute to the higher creep values

measured in the present study.

Conclusions

1. AAS concrete activated with a combination of SC and SS
had better workability, longer initial and final setting times,

and higher compressive strength in comparison with con-

crete mix activated only by SC. High MgO content acceler-

ated the hydration process and produced more rapid strength

development.
2. All of the AAS concretes had higher drying shrinkage than

comparable PC-based concretes in other studies.
3. Using the heat curing procedure (65°C for 24 h) developed a

higher early compressive strength with less progressing in

strength between 7 and 28 days old, and decreased the ultimate

shrinkage values by accelerating the autogenous shrinkage.

Moreover, the researchers found in a previous comparable study

(Humad et al. 2019) that increasing the MgO content increased

the drying shrinkage values of AAS concrete.
4. Concretes activated with SC showed slight reductions in strength

after 6 and 12 months.
5. Alkali-activated concrete based on high-MgO Swedish BFS

showed high creep, which could be related to the maximum ag-

gregate size of 8 mm, extensive microcracking of the binder ma-

trix, and the coarsening of the pore structure due to carbonation.

However, heat treatment produced higher creep values owing to

the formation of a more porous structure.
6. Carbonation of AAS concrete increased the Al=Ca ratio and

decreased the Si=Ca ratio and, presumably, weakened the sili-

cate binding gel, especially in the case of heat-cured samples

activated with SS. Moreover, high carbonation could be another

Fig. 13. Carbonation test with phenolphthalein of concrete beam

specimens (heat- and lab-cured) after more than 1 year of storage

sealed in plastic bags at laboratory environment (20°C� 2°C and

40%� 7% RH).

Table 4. Porosity values, calculated using ImageJ software from SEM

images after 2 years of exposure to laboratory environment (20°C� 2°C

and 40%� 7% RH)

Mix ID

Porosity percentage in different areas

Carbonated area Noncarbonated area

SC10 L 9.85 —

SC10 H 9.82 —

SS10 L 10.91 (semicarbonated) 6.63 (semicarbonated)

SS10 H 13.58 4.43

SC5þ SS5 L 7.62 (semicarbonated) 6.22 (semicarbonated)

SC5þ SS5 H 13.97 5.47

Fig. 12. Phenolphthalein test of carbonation of drying shrinkage

concrete specimens (100 mm in diameter) after 12 months of storage

in laboratory environment (20°C� 2°C and 40%� 7% RH) showing

carbonated region as colorless (the external donut area, check with

Tables 3 and 4), semicarbonated region with light magenta color

(the external donut area, check with Tables 3 and 4), and noncarbonated

region with dark magenta (the interior circle area): (a) mixes activated

with10% SC lab- (L) and heat-cured (H); (b) mixes activated with 10%

SS lab- (L) and heat-cured (H); and (c) mixes activated with 5% SCþ
5% SS lab- (L) and heat-cured (H). (Reprinted with permission from

Humad 2019.)
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reason for the high ultimate drying shrinkage due to carbonation

shrinkage.
7. The MgO content controls the formation of secondary phases,

such as hydrotalcite, and accelerates the hydration process.
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Fig. 14. EDX results showing effect of carbonation on Al=Ca and Si=Ca ratios, where red symbols denote these ratios at 28 days and black symbols

denote ratios after carbonation due to 24 months of storage of samples in laboratory environment (20°C� 2°C and 40%� 7% RH).

Fig. 15. Porosity percentage segmentation using Image J-software for SEM images of Mix SS10 H after 24 months of exposure to laboratory

environment (20°C� 2°C and 40%� 7% RH) showing difference in porosity between (a) noncarbonated; and (b) carbonated regions. (Reprinted

with permission from Humad 2019.)
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