7 research outputs found

    A Note on the Use of Uranine Tracer to Visualize Radionuclide Migration Experiments : Some Observations and Problems

    Get PDF
    Uranine is a dye commonly used in tracer experiments; it is chosen for its high visibility even at low concentrations. Uranine solutions are slightly denser than water at the same temperature. However, in laboratory experiments uranine solutions have been known to occasionally show unpredictable flow behaviors. This paper investigates the possible effect of light-induced density change to explain some of these behaviors. Uranine has a wide light absorption spectrum for visible light, which can heat the dye solution and lower its density to below that of the surrounding water, which induces buoyancy-driven flow. Simulations are made in both one dimension and two dimensions to determine the extent of the effect. The results are then compared to different experiments with unanticipated flow patterns.Peer reviewe

    Water density impact on water flow and mass transport in rock fractures

    No full text
    One way of taking care of spent nuclear fuel is to place it in a geological repository. In Sweden, a three-barrier system is planned. The system is based on encapsulating the fuel in copper canisters. These are surrounded by bentonite clay and buried under 500 m of bedrock. As a part of the safety assessment, the Q-equivalent model is used to quantify the possible release of radioactive material. This model also describes the rate at which corrosive agents carried by seeping water in rock fractures can reach the canisters, which may affect the longevity of the canisters. The aim of this thesis was originally to develop an experimental, phys- ical model to visualize and validate the Q-equivalent model. However, the overarching theme of this work has been to study the effect of minor density differences that might be overlooked in experiments, both concentration- dependent and density-difference induced by light absorption. In the initial diffusion and flow-experiment and associated calculations and simulations, it was found that simple Q-equivalent can describe and quantify the mass transport in both parallel and variable aperture fractures. However, this is the case only if the density difference between seeping water and clay pore water is insignificant. It was found in experiments with dyes used to visualise the flow and diffusion patterns that even minimal density differences could significantly alter the flow pattern. Density differences can result from concentration gradients or be induced by light absorption. TheQ-equivalent model was extended to account for density-induced flow. The importance of density-induced flow due to concentration gradients at the setting of a long-term repository for nuclear waste was evaluated. It was found that concentration gradients are able to induce rapid vertical up- or downward flow. This could increase the overall mass transport of radioactive material up to the biosphere or carry it downward to larger depths.Ett sĂ€tt att ta hand om anvĂ€nt kĂ€rnbrĂ€nsle Ă€r att placera det i ett geologiskt slutförvar. I Sverige planeras ett tre-barriĂ€rsförvar. Konceptet baseras pĂ„ att kapsla in det förbrukade brĂ€nslet i koppar kapslar som sedan placeras 500 m ner i berggrunden och omslutas av bentonitlera. Som en del av sĂ€kerhetsanalysen, anvĂ€nds Q-ekvivalent modellen f ̈or att kvantifiera det möjliga utslĂ€ppet av radioaktivt material. Modellen beskriver ocksĂ„ med vilken hastighet korrosivaĂ€mnen som fĂ€rdas med det lĂ„ngsamma vattnet i sprickorna kan nĂ„ kapslarna, vilket kan pĂ„verka dess livslĂ€ngd.  MĂ„let med denna avhandling var ursprungligen att utveckla en experimentell uppstĂ€llning for att visualisera och validera Q-ekvivalent modellen. Det  övergripande temat har varit att studera effekten av smĂ„ densitetsskillnader som kanske förbises i experimenten.  I de initiala diffusion och flödesexperiementen med tillhörande berĂ€kningar och simuleringar, framkom det att enkla Q-ekvivalent modellen kan beskriva och kvantifiera masstransport i bĂ„de parallella och sprickor med oregelbunden apertur. Dock, Ă€r det endast om densitetsskillnaden mellan det sipprande vattnet och porvattnet i bentonitleran Ă€r försumbar. Det visade sig att i experiment, med fĂ€rgĂ€mnen för att visualisera flödes- och diffusionsfördelningar, kan minimala densitetskillnader pĂ„verka flödesfördelningen avsevĂ€rt. Densitetsskillnaderna berodde antingen pĂ„ grund av koncentrations gradienter eller ljusabsorption. Q-ekvivalent modellen utökades för att ta hĂ€nsyn till densitetsdrivet flöde. Betydelsen av densitetsdrivet flöde orsakat av koncentrationsskillnader för slutförvar av radioaktivt avfall utvĂ€rderades. Det fanns att koncentrationsgradienter kan inducera snabba vertikala upp- och nergĂ„ende flöden. Detta kan öka den totala masstransporten av radioaktivt material upp till biosfĂ€ren eller föra det nerĂ„t till större djup. QC 2019-12-06</p

    Water density impact on water flow and mass transport in rock fractures

    No full text
    One way of taking care of spent nuclear fuel is to place it in a geological repository. In Sweden, a three-barrier system is planned. The system is based on encapsulating the fuel in copper canisters. These are surrounded by bentonite clay and buried under 500 m of bedrock. As a part of the safety assessment, the Q-equivalent model is used to quantify the possible release of radioactive material. This model also describes the rate at which corrosive agents carried by seeping water in rock fractures can reach the canisters, which may affect the longevity of the canisters. The aim of this thesis was originally to develop an experimental, phys- ical model to visualize and validate the Q-equivalent model. However, the overarching theme of this work has been to study the effect of minor density differences that might be overlooked in experiments, both concentration- dependent and density-difference induced by light absorption. In the initial diffusion and flow-experiment and associated calculations and simulations, it was found that simple Q-equivalent can describe and quantify the mass transport in both parallel and variable aperture fractures. However, this is the case only if the density difference between seeping water and clay pore water is insignificant. It was found in experiments with dyes used to visualise the flow and diffusion patterns that even minimal density differences could significantly alter the flow pattern. Density differences can result from concentration gradients or be induced by light absorption. TheQ-equivalent model was extended to account for density-induced flow. The importance of density-induced flow due to concentration gradients at the setting of a long-term repository for nuclear waste was evaluated. It was found that concentration gradients are able to induce rapid vertical up- or downward flow. This could increase the overall mass transport of radioactive material up to the biosphere or carry it downward to larger depths.Ett sĂ€tt att ta hand om anvĂ€nt kĂ€rnbrĂ€nsle Ă€r att placera det i ett geologiskt slutförvar. I Sverige planeras ett tre-barriĂ€rsförvar. Konceptet baseras pĂ„ att kapsla in det förbrukade brĂ€nslet i koppar kapslar som sedan placeras 500 m ner i berggrunden och omslutas av bentonitlera. Som en del av sĂ€kerhetsanalysen, anvĂ€nds Q-ekvivalent modellen f ̈or att kvantifiera det möjliga utslĂ€ppet av radioaktivt material. Modellen beskriver ocksĂ„ med vilken hastighet korrosivaĂ€mnen som fĂ€rdas med det lĂ„ngsamma vattnet i sprickorna kan nĂ„ kapslarna, vilket kan pĂ„verka dess livslĂ€ngd.  MĂ„let med denna avhandling var ursprungligen att utveckla en experimentell uppstĂ€llning for att visualisera och validera Q-ekvivalent modellen. Det  övergripande temat har varit att studera effekten av smĂ„ densitetsskillnader som kanske förbises i experimenten.  I de initiala diffusion och flödesexperiementen med tillhörande berĂ€kningar och simuleringar, framkom det att enkla Q-ekvivalent modellen kan beskriva och kvantifiera masstransport i bĂ„de parallella och sprickor med oregelbunden apertur. Dock, Ă€r det endast om densitetsskillnaden mellan det sipprande vattnet och porvattnet i bentonitleran Ă€r försumbar. Det visade sig att i experiment, med fĂ€rgĂ€mnen för att visualisera flödes- och diffusionsfördelningar, kan minimala densitetskillnader pĂ„verka flödesfördelningen avsevĂ€rt. Densitetsskillnaderna berodde antingen pĂ„ grund av koncentrations gradienter eller ljusabsorption. Q-ekvivalent modellen utökades för att ta hĂ€nsyn till densitetsdrivet flöde. Betydelsen av densitetsdrivet flöde orsakat av koncentrationsskillnader för slutförvar av radioaktivt avfall utvĂ€rderades. Det fanns att koncentrationsgradienter kan inducera snabba vertikala upp- och nergĂ„ende flöden. Detta kan öka den totala masstransporten av radioaktivt material upp till biosfĂ€ren eller föra det nerĂ„t till större djup. QC 2019-12-06</p

    Water density impact on water flow and mass transport in rock fractures

    No full text
    One way of taking care of spent nuclear fuel is to place it in a geological repository. In Sweden, a three-barrier system is planned. The system is based on encapsulating the fuel in copper canisters. These are surrounded by bentonite clay and buried under 500 m of bedrock. As a part of the safety assessment, the Q-equivalent model is used to quantify the possible release of radioactive material. This model also describes the rate at which corrosive agents carried by seeping water in rock fractures can reach the canisters, which may affect the longevity of the canisters. The aim of this thesis was originally to develop an experimental, phys- ical model to visualize and validate the Q-equivalent model. However, the overarching theme of this work has been to study the effect of minor density differences that might be overlooked in experiments, both concentration- dependent and density-difference induced by light absorption. In the initial diffusion and flow-experiment and associated calculations and simulations, it was found that simple Q-equivalent can describe and quantify the mass transport in both parallel and variable aperture fractures. However, this is the case only if the density difference between seeping water and clay pore water is insignificant. It was found in experiments with dyes used to visualise the flow and diffusion patterns that even minimal density differences could significantly alter the flow pattern. Density differences can result from concentration gradients or be induced by light absorption. TheQ-equivalent model was extended to account for density-induced flow. The importance of density-induced flow due to concentration gradients at the setting of a long-term repository for nuclear waste was evaluated. It was found that concentration gradients are able to induce rapid vertical up- or downward flow. This could increase the overall mass transport of radioactive material up to the biosphere or carry it downward to larger depths.Ett sĂ€tt att ta hand om anvĂ€nt kĂ€rnbrĂ€nsle Ă€r att placera det i ett geologiskt slutförvar. I Sverige planeras ett tre-barriĂ€rsförvar. Konceptet baseras pĂ„ att kapsla in det förbrukade brĂ€nslet i koppar kapslar som sedan placeras 500 m ner i berggrunden och omslutas av bentonitlera. Som en del av sĂ€kerhetsanalysen, anvĂ€nds Q-ekvivalent modellen f ̈or att kvantifiera det möjliga utslĂ€ppet av radioaktivt material. Modellen beskriver ocksĂ„ med vilken hastighet korrosivaĂ€mnen som fĂ€rdas med det lĂ„ngsamma vattnet i sprickorna kan nĂ„ kapslarna, vilket kan pĂ„verka dess livslĂ€ngd.  MĂ„let med denna avhandling var ursprungligen att utveckla en experimentell uppstĂ€llning for att visualisera och validera Q-ekvivalent modellen. Det  övergripande temat har varit att studera effekten av smĂ„ densitetsskillnader som kanske förbises i experimenten.  I de initiala diffusion och flödesexperiementen med tillhörande berĂ€kningar och simuleringar, framkom det att enkla Q-ekvivalent modellen kan beskriva och kvantifiera masstransport i bĂ„de parallella och sprickor med oregelbunden apertur. Dock, Ă€r det endast om densitetsskillnaden mellan det sipprande vattnet och porvattnet i bentonitleran Ă€r försumbar. Det visade sig att i experiment, med fĂ€rgĂ€mnen för att visualisera flödes- och diffusionsfördelningar, kan minimala densitetskillnader pĂ„verka flödesfördelningen avsevĂ€rt. Densitetsskillnaderna berodde antingen pĂ„ grund av koncentrations gradienter eller ljusabsorption. Q-ekvivalent modellen utökades för att ta hĂ€nsyn till densitetsdrivet flöde. Betydelsen av densitetsdrivet flöde orsakat av koncentrationsskillnader för slutförvar av radioaktivt avfall utvĂ€rderades. Det fanns att koncentrationsgradienter kan inducera snabba vertikala upp- och nergĂ„ende flöden. Detta kan öka den totala masstransporten av radioaktivt material upp till biosfĂ€ren eller föra det nerĂ„t till större djup. QC 2019-12-06</p

    Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives

    No full text

    References

    No full text
    corecore