3,498 research outputs found

    The great outdoors: how a green exercise environment can benefit all

    Get PDF
    The studies of human and environment interactions usually consider the extremes of environment on individuals or how humans affect the environment. It is well known that physical activity improves both physiological and psychological well-being, but further evidence is required to ascertain how different environments influence and shape health. This review considers the declining levels of physical activity, particularly in the Western world, and how the environment may help motivate and facilitate physical activity. It also addresses the additional physiological and mental health benefits that appear to occur when exercise is performed in an outdoor environment. However, people's connectedness to nature appears to be changing and this has important implications as to how humans are now interacting with nature. Barriers exist, and it is important that these are considered when discussing how to make exercise in the outdoors accessible and beneficial for all. The synergistic combination of exercise and exposure to nature and thus the 'great outdoors' could be used as a powerful tool to help fight the growing incidence of both physical inactivity and non-communicable disease. © 2013 Gladwell et al.; licensee BioMed Central Ltd

    Fluid machines: Expanding the limits, past and future

    Get PDF
    During the 40 yr period from 1940 to 1980, the capabilities and operating limits of fluid machines were greatly extended. This was due to a research program, carried out to meet the needs of aerospace programs. Some of the events are reviewed. Overall advancements of all machinery components are discussed followed by a detailed examination of technology advancements in axial compressors and pumps. Future technology needs are suggested

    Secondary flow spanwise deviation model for the stators of NASA middle compressor stages

    Get PDF
    A model of the spanwise variation of deviation for stator blades is presented. Deviation is defined as the difference between the passage mean flow angle and the metal angle at the outlet of a blade element of an axial compressor stage. The variation of deviation is taken as the difference above or below that predicted by blade element, (i.e., two-dimensional) theory at any spanwise location. The variation of deviation is dependent upon the blade camber, solidity and inlet boundary layer thickness at the hub or tip end-wall, and the blade channel aspect ratio. If these parameters are known or can be calculated, the model provides a reasonable approximation of the spanwise variation of deviation for most compressor middle stage stators operating at subsonic inlet Mach numbers

    Some observations of the effects of radial distortions on performance of a transonic rotating blade row

    Get PDF
    A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed

    Anticoagulants for acute ischaemic stroke

    Get PDF
    Peer reviewedPublisher PD

    Population fitness has a concave relationship with migration distance in Sanderlings

    Get PDF
    n Focus: Reneerkens, J., Versluijs, T. S. L., Piersma, T., Alves, J. A., Boorman, M., Corse, C., ... Lok, T. (2020). Low fitness at low latitudes: wintering in the tropics in-creases migratory delays and mortality rates in an Arctic breeding shorebird. Journal of Animal Ecology, 89, 691–703. A central question in migratory ecology has been to understand the fitness consequences of individual variation in migration distance among different species and populations. Reneerkens et al. (2020) investigated the demographic consequences of long-distance migration for Sanderlings Calidris alba, an Arctic-breeding species of sandpiper. Their study population has a remark-able geographic distribution with a breeding range that is concentrated in north-east Greenland and Ellesmere Island, Canada but a nonbreeding range that extends across 85° of latitude from Scotland to Namibia. The authors report on unexpected patterns of latitudinal variation in three demographic parameters: timing of passage on northward migration, probability of juvenile migration and apparent survival of adults. Sanderlings travelling 1,800–2,800 km to settle at north temperate sites dur-ing the nonbreeding season had earlier passage dates, and also higher probabilities of migration and apparent survival. In contrast, birds travelling 6,000–7,800 km to equato-rial sites experienced later passage dates, delayed maturity and lower apparent survival. However, if Sanderlings migrated even farther and flew over 11,000 km to nonbreed-ing sites in Namibia, then their performance was restored to early passage dates and higher survival. Movement tracks from birds tagged with geolocators showed that birds wintering in Namibia make nonstop flights of 7,500 km that bypass West Africa during northward migration. Thus, all lines of evidence suggest that Sanderlings face adversity when spending the nonbreeding season at equatorial latitudes. Moreover, the central finding that components of fitness can have nonlinear relationships with migration dis-tance is a novel discovery that leads to many additional questions. The new findings have broader implications for theoretical models of migration, and for understanding how different patterns of movements may arise or be maintained in migratory speciespublishedVersio

    Gesture as a predictor of language development in infants at high risk for autism spectrum disorders

    Get PDF
    In typically developing children, gesture use predates and predicts changes in language. Because language development is often delayed in later-born siblings of children with autism spectrum disorders (ASD) (who are at heightened biological risk for the disorder; heightened risk infants: HR), even those who are not eventually diagnosed with ASD, gesture may be one of the earliest indicators of later delays. To examine the pattern of gesture use and language development in HR infants, gesture referents for HR infants and low risk (LR) comparison infants were coded at 14 and 18 month home visits. HR infants who went on to receive either a language delay (LD) or ASD diagnosis exhibited less frequent gesture use and used gesture to indicate a smaller variety of referents than their typically developing peers at both 14 and 18 months. In comparison to LR infants, HR infants who went on to receive LD or ASD diagnoses also exhibited smaller increases in gesture use from 14 to 18 months. While there was a significant positive correlation between gesture frequency at 14 months and vocabulary size at 18 months for the HR group, HR infants that received eventual LD or ASD diagnoses converted a smaller proportion of gesture referents to words in later vocabulary than did LR infants. Taken together, these results suggest that early gesture use and its relationship to later language development differentiates HR infants who receive later LD or ASD diagnoses from typically developing infants, indicating that gesture may have the potential to be used as marker of language delays prior to the onset of speech

    Off-design correlation for losses due to part-span dampers on transonic rotors

    Get PDF
    Experimental data from 10 transonic fan rotors were used to correlate losses created by part-span dampers located near the midchord position on the rotor blades. The design tip speed of these rotors varied from 419 to 425 m/sec, and the design pressure ratio varied from 1.6 to 2.0. Additional loss caused by the dampers for operating conditions between 50 and 100 percent of design speed were correlated with relevant aerodynamic and geometric parameters. The resulting correlation predicts the variation of total-pressure-loss coefficient in the damper region to a good approximation
    • …
    corecore