1,030 research outputs found

    Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot

    Get PDF
    Giant optical Faraday rotation (GFR) and giant optical circular birefringence (GCB) induced by a single quantum-dot spin in an optical microcavity can be regarded as linear effects in the weak-excitation approximation if the input field lies in the low-power limit [Hu et al, Phys.Rev. B {\bf 78}, 085307(2008) and ibid {\bf 80}, 205326(2009)]. In this work, we investigate the transition from the weak-excitation approximation moving into the saturation regime comparing a semiclassical approximation with the numerical results from a quantum optics toolbox [S.M. Tan, J. Opt. B {\bf 1}, 424 (1999)]. We find that the GFR and GCB around the cavity resonance in the strong coupling regime are input-field independent at intermediate powers and can be well described by the semiclassical approximation. Those associated with the dressed state resonances in the strong coupling regime or merging with the cavity resonance in the Purcell regime are sensitive to input field at intermediate powers, and cannot be well described by the semiclassical approximation due to the quantum dot saturation. As the GFR and GCB around the cavity resonance are relatively immune to the saturation effects, the rapid read out of single electron spins can be carried out with coherent state and other statistically fluctuating light fields. This also shows that high speed quantum entangling gates, robust against input power variations, can be built exploiting these linear effects.Comment: Section IV has been added to show the linear GFR/GCB is not affected by high-order dressed state resonances in reflection/transmission spectra. 11 pages, 9 figure

    Hong-Ou-Mandel interferometry on a biphoton beat note

    Get PDF
    Hong-Ou-Mandel interference, the fact that identical photons that arrive simultaneously on different input ports of a beam splitter bunch into a common output port, can be used to measure optical delays between different paths. It is generally assumed that great precision in the measurement requires that photons contain many frequencies, i.e., a large bandwidth. Here we challenge this well-known assumption and show that the use of two well-separated frequencies embedded in a quantum entangled state (discrete color entanglement) suffices to achieve great precision. We determine optimum working points using a Fisher Information analysis and demonstrate the experimental feasibility of this approach by detecting thermally-induced delays in an optical fiber. These results may significantly facilitate the use of quantum interference for quantum sensing, by avoiding some stringent conditions such as the requirement for large bandwidth signals

    A quantum key distribution protocol for rapid denial of service detection

    Get PDF
    We introduce a quantum key distribution protocol designed to expose fake users that connect to Alice or Bob for the purpose of monopolising the link and denying service. It inherently resists attempts to exhaust Alice and Bob's initial shared secret, and is 100% efficient, regardless of the number of qubits exchanged above the finite key limit. Additionally, secure key can be generated from two-photon pulses, without having to make any extra modifications. This is made possible by relaxing the security of BB84 to that of the quantum-safe block cipher used for day-to-day encryption, meaning the overall security remains unaffected for useful real-world cryptosystems such as AES-GCM being keyed with quantum devices.Comment: 13 pages, 3 figures. v2: Shifted focus of paper towards DoS and added protocol 4. v1: Accepted to QCrypt 201

    Do the laws of physics prohibit counterfactual communication?

    Full text link
    It has been conjectured that counterfactual communication is impossible, even for post-selected quantum particles. We strongly challenge this by proposing exactly such a counterfactual scheme where---unambiguously---none of Alice's photons that make it has been to Bob. We demonstrate counterfactuality theoretically and experimentally by means of weak measurements, as well as conceptually using consistent histories. Importantly, the accuracy of Alice learning Bob's bit can be made arbitrarily close to unity with no trace left by Bob on Alice's photon.Comment: Experiment conducted in the lab, showing no weak trace from Bob at either D0 or D1. 5 pages, 5 figure

    On the effects of self- and cross-phase modulation on photon purity for four-wave mixing photon-pair sources

    Full text link
    We consider the effect of self-phase modulation and cross-phase modulation on the joint spectral amplitude of photon pairs generated by spontaneous four-wave mixing. In particular, the purity of a heralded photon from a pair is considered, in the context of schemes that aim to maximise the purity and minimise correlation in the joint spectral amplitude using birefringent phase-matching and short pump pulses. We find that non-linear phase modulation effects will be detrimental, and will limit the quantum interference visibility that can be achieved at a given generation rate. An approximate expression for the joint spectral amplitude with phase modulation is found by considering the group velocity walk-off between each photon and the pump, but neglecting the group-velocity dispersion at each wavelength. The group-velocity dispersion can also be included with a numerical calculation, and it is shown that it only has a small effect on the purity for the realistic parameters considered.Comment: 11 pages, 10 figure

    Generating entanglement with low Q-factor microcavities

    Full text link
    We propose a method of generating entanglement using single photons and electron spins in the regime of resonance scattering. The technique involves matching the spontaneous emission rate of the spin dipole transition in bulk dielectric to the modified rate of spontaneous emission of the dipole coupled to the fundamental mode of an optical microcavity. We call this regime resonance scattering where interference between the input photons and those scattered by the resonantly coupled dipole transition result in a reflectivity of zero. The contrast between this and the unit reflectivity when the cavity is empty allow us to perform a non demolition measurement of the spin and to non deterministically generate entanglement between photons and spins. The chief advantage of working in the regime of resonance scattering is that the required cavity quality factors are orders of magnitude lower than is required for strong coupling, or Purcell enhancement. This makes engineering a suitable cavity much easier particularly in materials such as diamond where etching high quality factor cavities remains a significant challenge

    Experimental demonstration of a measurement-based realisation of a quantum channel

    Get PDF
    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the bases of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.Comment: 8 pages, 4 figure

    Heralding Single Photons from Pulsed Parametric Down-Conversion

    Full text link
    We describe an experiment in which photon pairs from a pulsed parametric down-conversion source were coupled into single-mode fibers. Detecting one of the photons heralded the presence of the other photon in its fiber with a probability of 83%. The heralded photons were then used in a simple multi-photon interference experiment to illustrate their potential for quantum information applications.Comment: 4 pages, 7 figures. Version 2 has minor revision

    Does entanglement depend on the timing of the impacts at the beam-splitters?

    Get PDF
    A new nonlocality experiment with moving beam-splitters is proposed. The experiment is analysed according to conventional quantum mechanics, and to an alternative nonlocal description in which superposition depends not only on indistinguishability but also on the timing of the impacts at the beam-splitters.Comment: 5 pages of Latex and 2 eps figures. Submitted to Phys. Lett.
    • …
    corecore