832 research outputs found

    Humans and elephants as treefall drivers in African savannas

    Get PDF
    Humans have played a major role in altering savanna structure and function, and growing land-use pressure will only increase their influence on woody cover. Yet humans are often overlooked as ecological components. Both humans and the African elephant Loxodonta africana alter woody vegetation in savannas through removal of large trees and activities that may increase shrub cover. Interactive effects of both humans and elephants with fire may also alter vegetation structure and composition. Here we capitalize on a macroscale experimental opportunity – brought about by the juxtaposition of an elephant-mediated landscape, human-utilized communal harvesting lands and a nature reserve fenced off from both humans and elephants – to investigate the influence of humans and elephants on height-specific treefall dynamics. We surveyed 6812 ha using repeat, airborne high resolution Light Detection and Ranging (LiDAR) to track the fate of 453 685 tree canopies over two years. Human-mediated biennial treefall rates were 2–3.5 fold higher than the background treefall rate of 1.5% treefall ha–1, while elephant-mediated treefall rates were 5 times higher at 7.6% treefall ha–1 than the control site. Model predictors of treefall revealed that human or elephant presence was the most important variable, followed by the interaction between geology and fire frequency. Treefall patterns were spatially heterogeneous with elephant-driven treefall associated with geology and surface water, while human patterns were related to perceived ease of access to wood harvesting areas and settlement expansion. Our results show humans and elephants utilize all height classes of woody vegetation, and that large tree shortages in a heavily utilized communal land has transferred treefall occurrence to shorter vegetation. Elephant- and human-dominated landscapes are tied to interactive effects that may hinder tree seedling survival which, combined with tree loss in the landscape, may compromise woodland sustainability.Andrew Mellon Foundation; Council for Scientific and Industrial Research (CSIR) Strategic Research Panel; Dept of Science and Technology (DST); Avatar Alliance Foundation; Margaret A. Cargill Foundation; David and Lucile Packard Foundation; Gordon and Betty Moore Foundation; Grantham Foundation for the Protection of the Environment; W. M. Keck Foundation; John D. and Catherine T. MacArthur Foundation; Exxaro Chairman's Fund; Applied Centre for Climate and Earth System Science; DST/NRF Centre of Excellence in Tree Health Biotechnology; NRF Innovation Scholarship [UID: 95030].http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1600-05872018-11-30hj2017Geography, Geoinformatics and Meteorolog

    Fuelwood extraction intensity drives compensatory regrowth in African savanna communal lands

    Get PDF
    Woody biomass remains the primary energy source for domestic use in the developing world, raising concerns about woodland sustainability. Yet woodland regenerative capacity and the adaptive response of harvesters to localised fuelwood shortages are often underestimated or unaccounted for in fuelwood supply–demand models. Here, we explore the rates and patterns of height‐specific woody vegetation structural dynamics in three communal lands in a semiarid savanna in South Africa. Using repeat, airborne light detection and ranging, we measured height‐specific change in woody vegetation structure, and the relative influence of geology, fire, and ease of access to fuelwood. Monitoring 634,284 trees canopies over 4 years revealed high compensatory growth, particularly in the high wood extraction communal land: 34.1% of trees increased in height >1 m. Vegetation structural patterns were associated with ease of access to the communal land but were mediated by wood extraction intensity. In these communal lands, vegetation structural dynamics show rapid woody thickening as a response to repeat harvesting. However, loss of height in vegetation structure did not follow a gradient of wood extraction intensity. We propose a conceptual framework to better understand change in vegetation structural metrics and the paradoxical phenomenon of high growth in high wood extraction scenarios. We also show coadaptive responses of humans and woody vegetation to fuelwood harvesting in human–environment systems through patterns of regrowth response relative to ease of access to fuelwood resources.LiDAR data collection was funded by the Andrew Mellon Foundation, the Council for Scientific and Industrial Research (CSIR) Strategic Research Panel and the Department of Science and Technology (DST). The CAO has been made possible by grants and donations from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr, and William R. Hearst III. B. F. N. E. is supported by the Exxaro Chairman's Fund. P. J. M. is funded by the DST/NRF Centre of Excellence in Tree Health Biotechnology and an NRF Innovation Scholarship (grant UID: 95030).http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-145X2020-01-30hj2018Geography, Geoinformatics and Meteorolog

    What lies beneath : detecting sub-canopy changes in savanna woodlands using a three-dimensional classification method

    Get PDF
    QUESTION : Increasing population pressure, socio-economic development and associated natural resource use in savannas are resulting in large-scale land cover changes, which can be mapped using remote sensing. Is a three-dimensional (3D) woody vegetation structural classification applied to LiDAR (Light Detection and Ranging) data better than a 2D analysis to investigate change in fine-scale woody vegetation structure over 2 yrs in a protected area (PA) and a communal rangeland (CR)? LOCATION : Bushbuckridge Municipality and Sabi Sand Wildtuin, NE South Africa. METHODS : Airborne LiDAR data were collected over 3 300 ha in April 2008 and 2010. Individual tree canopies were identified using object-based image analysis and classified into four height classes: 1–3, 3–6, 6–10 and >10 m. Four structural metrics were calculated for 0.25-ha grid cells: canopy cover, number of canopy layers present, cohesion and number of height classes present. The relationship between top-of-canopy cover and sub-canopy cover was investigated using regression. Gains, losses and persistence (GLP) of cover at each height class and the four structural metrics were calculated. GLP of clusters of each structural metric (calculated using LISA – Local Indicators of Spatial Association – statistics) were used to assess the changes in clusters of eachmetric over time. RESULTS : Top-of-canopy cover was not a good predictor of sub-canopy cover. The number of canopy layers present and cohesion showed gains and losseswith persistence in canopy cover over time, necessitating the use of a 3D classification to detect fine-scale changes, especially in structurally heterogeneous savannas. Trees >3 min height showed recruitment and gains up to 2.2 times higher in the CR where they are likely to be protected for cultural reasons, but losses of up to 3.2-foldmore in the PA, possibly due to treefall caused by elephant and/or fire. CONCLUSION : Land use has affected sub-canopy structure in the adjacent sites, with the low intensity use CR showing higher structural diversity. A 3D classification approach was successful in detecting fine-scale, short-term changes between land uses, and can thus be used as amonitoring tool for savannawoody vegetation structure. Remove selectedThe Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, W.M. Keck Foundation, Gordon and Betty Moore Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr. and William R. Hearst III. Application of the CAO data in South Africa is made possible by the Andrew Mellon Foundation and the endowment of the Carnegie Institution for Science.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1654-109X2016-07-31hb201

    Biomass increases go under cover : woody vegetation dynamics in South African rangelands

    Get PDF
    Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10–14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be misinterpreted as woodland recovery in the absence of three-dimensional, subcanopy information.S1 Dataset. Biomass model data. Data include 2012 LiDAR-derived average height and canopy cover extraction metrics, as well as field-work based allometry. Each line item is per 25 m x 25 m grid cell. Metadata are included in the dataset.S2 Dataset. Biomass and subcanopy data. Data include 2008 and 2012 biomass estimates derived from biomass models as well as % subcanopy returns for voxel data for the height class categories: 1-3m, 3-5m, 5-10m and >10m. Each line item is per 25 m x 25 m grid cell. Data are organized per land extraction category into separate worksheets. Metadata are included in the dataset.S3 Dataset. Biomass changes (Mg ha-1) in relation to relative height and canopy cover change. Data include biomass change estimates (2008–2012), percentage height and canopy cover changes for each 25 m x 25 m grid cell. Each height class (relative to height in 2008) are shown on separate worksheets. Metadata are included in the dataset.S1 Fig. Site-specific biomass model residuals. The residual spread demonstrates heteroskedasticity with increasing biomass fitted values for rangelands with a) high, b) intermediate and c) low extraction pressure.S2 Fig. Biomass changes (%) relative to height-specific change in subcanopy returns (%). Height categories are: 1–3 m, 3–5 m, 5–10 m and >10 m.The Carnegie Airborne Observatory (CAO) is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, Gordon and Betty Moore Foundation, Mary Anne Nyburg Baker and G. Leonard Baker, Jr., and William R. Hearst III. Application of the CAO data in South Africa is made possible through the Andrew Mellon Foundation and the endowment of the Carnegie Institution for Science, the Council for Scientific and Industrial Research (CSIR), and the South African Department of Science and Technology (grant agreement DST/ CON 0119/2010, Earth Observation Application Development in Support of SAEOS). CSIR coauthors are supported by the European Union’s Seventh Framework Programme (FP7/2007-2013, grant agreement n°282621, AGRICAB). PJM acknowledges funding from the National Research Foundation (NRF: SFH1207203615). Additionally, PJM and ETFW acknowledge the DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and, PJM and BFNE, the Applied Centre for Climate and Earth Systems Science (ACCESS). BFNE acknowledges financial support from Exxaro.http://www.plosone.orgam201

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Nucleoside/nucleotide reverse transcriptase inhibitor sparing regimen with once daily integrase inhibitor plus boosted darunavir is non-inferior to standard of care in virologically-suppressed children and adolescents living with HIV – Week 48 results of the randomised SMILE Penta-17-ANRS 152 clinical trial

    Get PDF

    K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76  TeV

    Get PDF
    The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76  TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4  GeV/c (0.6  GeV/c for Λ) to 12  GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3  GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9  TeV and at s√=7  TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2  GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore