10 research outputs found

    La fatigue des muscles ventilatoires à l'exercice maximal sur deux ergomètres différents

    No full text
    Etude de la relation entre l'exercice physique et la fatigue des muscles respiratoires en fonction du niveau d'entraînement, de l'intensité de l'effort maximal et du type d'ergomètre : ergocycle ou tapis roulant

    Myocardial blood flow and adenosine A2A receptor density in endurance athletes and untrained men

    No full text
    Previous human studies have shown divergent results concerning the effects of exercise training on myocardial blood flow (MBF) at rest or during adenosine-induced hyperaemia in humans. We studied whether these responses are related to alterations in adenosine A2A receptor (A2AR) density in the left-ventricular (LV) myocardium, size and work output of the athlete's heart, or to fitness level. MBF at baseline and during intravenous adenosine infusion, and A2AR density at baseline were measured using positron emission tomography, and by a novel A2AR tracer in 10 healthy male endurance athletes (ET) and 10 healthy untrained (UT) men. Structural LV parameters were measured with echocardiography. LV mass index was 71% higher in ET than UT (193 ± 18 g m−2versus 114 ± 13 g m−2, respectively). MBF per gram of tissue was significantly lower in the ET than UT at baseline, but this was only partly explained by reduced LV work load since MBF corrected for LV work was higher in ET than UT, as well as total MBF. The MBF during adenosine-induced hyperaemia was reduced in ET compared to UT, and the fitter the athlete was, the lower was adenosine-induced MBF. A2AR density was not different between the groups and was not coupled to resting or adenosine-mediated MBF. The novel findings of the present study show that the adaptations in the heart of highly trained endurance athletes lead to relative myocardial ‘overperfusion’ at rest. On the other hand hyperaemic perfusion is reduced, but is not explained by A2AR density

    Physiological differences between cycling and running

    No full text
    This review compares the differences in systemic responses (VO2max, anaerobic threshold, heart rate and economy) and in underlying mechanisms of adaptation (ventilatory and hemodynamic and neuromuscular responses) between cycling and running. VO2max is specific to the exercise modality. Overall, there is more physiological training transfer from running to cycling than vice-versa. Several other physiological differences between cycling and running are discussed: HR is different between the two activities both for maximal and sub-maximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than running due to mechanical constraints. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling

    The Heart as a Special Muscle in Athletes and Anabolic–Androgenic Steroids (Ab)use

    No full text

    Peripheral Circulation

    No full text
    Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulation
    corecore