83 research outputs found

    Beyond Patient Reported Pain: Perfusion Magnetic Resonance Imaging Demonstrates Reproducible Cerebral Representation of Ongoing Post-Surgical Pain

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Quantifying the test-retest reliability of cerebral blood flow measurements in a clinical model of on-going post-surgical pain: A study using pseudo-continuous arterial spin labelling

    Get PDF
    Arterial spin labelling (ASL) is increasingly being applied to study the cerebral response to pain in both experimental human models and patients with persistent pain. Despite its advantages, scanning time and reliability remain important issues in the clinical applicability of ASL. Here we present the test-retest analysis of concurrent pseudo-continuous ASL (pCASL) and visual analogue scale (VAS), in a clinical model of on-going pain following third molar extraction (TME). Using ICC performance measures, we were able to quantify the reliability of the post-surgical pain state and ΔCBF (change in CBF), both at the group and individual case level. Within-subject, the inter- and intra-session reliability of the post-surgical pain state was ranked good-to-excellent (ICC > 0.6) across both pCASL and VAS modalities. The parameter ΔCBF (change in CBF between pre- and post-surgical states) performed reliably (ICC > 0.4), provided that a single baseline condition (or the mean of more than one baseline) was used for subtraction. Between-subjects, the pCASL measurements in the post-surgical pain state and ΔCBF were both characterised as reliable (ICC > 0.4). However, the subjective VAS pain ratings demonstrated a significant contribution of pain state variability, which suggests diminished utility for interindividual comparisons. These analyses indicate that the pCASL imaging technique has considerable potential for the comparison of within- and between-subjects differences associated with pain-induced state changes and baseline differences in regional CBF. They also suggest that differences in baseline perfusion and functional lateralisation characteristics may play an important role in the overall reliability of the estimated changes in CBF. Repeated measures designs have the important advantage that they provide good reliability for comparing condition effects because all sources of variability between subjects are excluded from the experimental error. The ability to elicit reliable neural correlates of on-going pain using quantitative perfusion imaging may help support the conclusions derived from subjective self-report

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Parrots Eat Nutritious Foods despite Toxins

    Get PDF
    Generalist herbivores are challenged not only by the low nitrogen and high indigestibility of their plant foods, but also by physical and chemical defenses of plants. This study investigated the foods of wild parrots in the Peruvian Amazon and asked whether these foods contain dietary components that are limiting for generalist herbivores (protein, lipids, minerals) and in what quantity; whether parrots chose foods based on nutrient content; and whether parrots avoid plants that are chemically defended.We made 224 field observations of free-ranging parrots of 17 species in 8 genera foraging on 102 species of trees in an undisturbed tropical rainforest, in two dry seasons (July-August 1992-1993) and one wet season (January-February1994). We performed laboratory analyses of parts of plants eaten and not eaten by parrots and brine shrimp assays of toxicity as a proxy for vertebrates. Parrots ate seeds, fruits, flowers, leaves, bark, and insect larvae, but up to 70% of their diet comprised seeds of many species of tropical trees, in various stages of ripeness. Plant parts eaten by parrots were rich in protein, lipid, and essential minerals, as well as potentially toxic chemicals. Seeds were higher than other plant materials in protein and lipid and lower in fiber. Large macaws of three species ate foods higher in protein and lipids and lower in fiber compared to plant parts available but not eaten. Macaws ate foods that were lower in phenolic compounds than foods they avoided. Nevertheless, foods eaten by macaws contained measurable levels of toxicity. Macaws did not appear to make dietary selections based on mineral content.Parrots represent a remarkable example of a generalist herbivore that consumes seeds destructively despite plant chemical defenses. With the ability to eat toxic foods, rainforest-dwelling parrots exploited a diversity of nutritious foods, even in the dry season when food was scarce for other frugivores and granivores

    Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how <it>Rb</it>-deficiency would affect responses to TGFβ-induced cell cycle arrest.</p> <p>Results</p> <p>Primary hepatocytes isolated from <it>Rb-floxed </it>mice were infected with an adenovirus expressing CRE-recombinase to delete the <it>Rb </it>gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16<sup>INK4A </sup>and P21<sup>Cip </sup>and reduction of E2F activity. In <it>Rb</it>-null hepatocytes, cMYC activity decreased slightly but P16<sup>INK4A </sup>was not activated and the great majority of cells continued cycling. <it>Rb </it>is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some <it>Rb</it>-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21<sup>Cip1 </sup>and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of <it>p53 </it>and <it>p21</it><sup><it>Cip1</it></sup>. Hepatocytes deficient in <it>p53 or p21</it><sup><it>Cip1 </it></sup>showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21<sup>Cip </sup>and P53 work through the same pathway to regulate G1/S in response to TGFβ. In <it>Rb</it>-deficient cells however, <it>p53 </it>but not <it>p21</it><sup><it>Cip </it></sup>deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity.</p> <p>Conclusion</p> <p>The present results show that otherwise genetically normal hepatocytes with disabled <it>p53</it>, <it>p21</it><sup><it>Cip1 </it></sup>or <it>Rb </it>genes respond less well to the antiproliferative effects of TGFβ. As the function of these critical cellular proteins can be impaired by common causes of chronic liver disease and HCC, including viral hepatitis B and C proteins, we suggest that disruption of pRb function, and to a lesser extend P21<sup>Cip1 </sup>and P53 in hepatocytes may represent an additional new mechanism of escape from TGFβ-growth-inhibition in the inflammatory milieu of chronic liver disease and contribute to cancer development.</p
    corecore