69 research outputs found

    Macrophage migration inhibitory factor expression in male and female ethanol-fed rats

    Get PDF
    Macrophage migration inhibitory factory (MIF) regulates macrophage accumulation at sites of injury and can promote the inflammatory response. We studied MIF expression in the intragastric feeding rat model for alcoholic liver injury. Male and age-matched female rats were fed ethanol or dextrose with fish oil. Two groups of male rats were fed medium-chain triglycerides with ethanol or dextrose. Analysis of liver histopathology, lipid peroxidation, endotoxin, mRNA, and immunohistochemistry for MIF, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were carried out. Male and female rats fed fish oil and ethanol showed necroinflammatory liver injury and had the highest expression of MIF, TNF-α, and IFN-γ in the liver. Decreased levels of MIF protein were seen in rats with higher endotoxin levels, suggesting that preformed MIF is released into the circulation. MIF is an important mediator of the inflammatory response in alcoholic liver disease and a potential therapeutic target.published_or_final_versio

    Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    Get PDF
    The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use).To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P.These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an important mechanism by which HK's allow cells to adapt to changing metabolic conditions to maintain energy balance and avoid injury

    Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monocyte-derived macrophages and dendritic cells (DCs) are important in inflammatory processes and are often used for immunotherapeutic approaches. Blood monocytes can be differentiated into macrophages and DCs, which is accompanied with transcriptional changes in many genes, including chemokines and cell surface markers.</p> <p>Results</p> <p>To study the chromatin modifications associated with this differentiation, we performed a genome wide analysis of histone H3 trimethylation on lysine 4 (H3K4me3) and 27 (H3K27me3) as well as acetylation of H3 lysines (AcH3) in promoter regions. We report that both H3K4me3 and AcH3 marks significantly correlate with transcriptionally active genes whereas H3K27me3 mark is associated with inactive gene promoters. During differentiation, the H3K4me3 levels decreased on monocyte-specific CD14, CCR2 and CX3CR1 but increased on DC-specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. Genes associated with phagocytosis and antigen presentation were marked by H3K4me3 modifications. We also report that H3K4me3 levels on clustered chemokine and surface marker genes often correlate with transcriptional activity.</p> <p>Conclusion</p> <p>Our results provide a basis for further functional correlations between gene expression and histone modifications in monocyte-derived macrophages and DCs.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Interactive effects of obesity and physical fitness on risk of ischemic heart disease

    Get PDF
    Background/Objectives:Obesity and low physical fitness are known risk factors for ischemic heart disease (IHD), but their interactive effects are unclear. Elucidation of interactions between these common, modifiable risk factors may help inform more effective preventive strategies. We examined interactive effects of obesity, aerobic fitness and muscular strength in late adolescence on risk of IHD in adulthood in a large national cohort.Subjects/Methods:We conducted a national cohort study of all 1 547 407 military conscripts in Sweden during 1969-1997 (97-98% of all 18-year-old males each year). Aerobic fitness, muscular strength and body mass index (BMI) measurements were examined in relation to IHD identified from outpatient and inpatient diagnoses through 2012 (maximum age 62 years).Results:There were 38 142 men diagnosed with IHD in 39.7 million person years of follow-up. High BMI or low aerobic fitness (but not muscular strength) was associated with higher risk of IHD, adjusting for family history and socioeconomic factors. The combination of high BMI (overweight/obese vs normal) and low aerobic fitness (lowest vs highest tertile) was associated with highest IHD risk (incidence rate ratio, 3.11; 95% confidence interval (CI), 2.91-3.31; P<0.001). These exposures had no additive and a negative multiplicative interaction (that is, their combined effect was less than the product of their separate effects). Low aerobic fitness was a strong risk factor even among those with normal BMI.Conclusions:In this large cohort study, low aerobic fitness or high BMI at age 18 was associated with higher risk of IHD in adulthood, with a negative multiplicative interaction. Low aerobic fitness appeared to account for a similar number of IHD cases among those with normal vs high BMI (that is, no additive interaction). These findings suggest that interventions to prevent IHD should begin early in life and include not only weight control but aerobic fitness, even among persons of normal weight

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review

    Get PDF
    As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed
    • 

    corecore