11 research outputs found

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Tip chip:Subcellular sampling from single cancer cells

    No full text
    To analyze the molecular content of single cells, cell lysis is typically required, yielding a snapshot of cell behavior only. To follow complex molecular profiles over time, subcellular sampling methods potentially can be used, but to date these methods involve laborious offline analysis. Here we report a "tip chip" device for continuous online coupling of subcellular sampling and on-chip sample analysis. The device contains a hollow, sharp, out-of-plane tip connected to a microfluidic channel structure. After positioning a cell onto the tip using a fluidic force microscope, intracellular molecules diffuse into the microchannel and are directly analyzed using isotachophoresis

    Nucleation and aggregative growth of palladium nanoparticles on carbon electrodes: Experiment and kinetic model

    Get PDF
    The mechanism and kinetics of the electrochemical nucleation and growth of palladium (Pd) nanoparticles (NPs) on carbon electrodes have been investigated using a microscale meniscus cell on both highly oriented pyrolytic graphite (HOPG) and a carbon-coated transmission electron microscopy (TEM) grid. Using a microscale meniscus cell, it is possible to monitor the initial stage of electrodeposition electrochemically, while the ability to measure directly on a TEM grid allows subsequent high-resolution microscopy characterization which provides detailed nanoscopic and kinetic information. TEM analysis clearly shows that Pd is electrodeposited in the form of NPs (approximately 1–2 nm diameter) that aggregate into extensive nanocrystal-type structures. This gives rise to a high NP density. This mechanism is shown to be consistent with double potential step chronoamperometry measurements on HOPG, where a forward step generates electrodeposited Pd and the reverse step oxidizes the surface of the electrodeposited Pd to Pd oxide. The charge passed in these transients can be used to estimate the amounts of NPs electrodeposited and their size. Good agreement is found between the electrochemically determined parameters and the microscopy measurements. A model for electrodeposition based on the nucleation of NPs that aggregate to form stable structures is proposed that is used to analyze data and extract kinetics. This simple model reveals considerable information on the NP nucleation rate, the importance of aggregation in the deposition process, and quantitative values for the aggregation rate

    Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble

    Get PDF
    The relationship between the structural properties, such as the size and the shape, of a catalytic nanoparticle and its reactivity is a key concept in (electro) catalysis. Current understanding of this relationship is mainly derived from studies involving large ensembles of nanoparticles (NPs). However, the results necessarily reflect the average catalytic behavior of an ensemble, even though the properties of individual particles may vary widely. Here, we demonstrate a novel approach using scanning electrochemical cell microscopy (SECCM) to locate and map the reactivity of individual NPs within an electrocatalytic ensemble, consisting of platinum NPs supported on a single carbon nanotube. Significantly, our studies show that subtle variations in the morphology of NPs lead to dramatic changes in (potential-dependent) reactivity, which has important implications for the design and assessment of NP catalysts. The instrumental approach described is general and opens up new avenues of research in functional imaging, nanoscale electron transfer, and catalysis

    Energetic stress: The reciprocal relationship between energy availability and the stress response

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore