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■ Abstract Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique 

purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of 

surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, 

for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this 

technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of 

SECCM in resolving complex structure-activity problems and provide considerable new information on 

electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, 

nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer 

during its short existence demonstrate its potential to become a major technique in electrochemistry and 

interfacial science. 

Keywords scanning probe microscopy, electrocatalysis, carbon nanotubes, graphene, nanoparticles, 

micropipettes and nanopipettes 

1. INTRODUCTION 

Since its introduction in 2010, scanning electrochemical cell microscopy (SECCM) (1) 

has developed into a versatile scanning probe microscopy technique suitable for many 

applications. The probe in SECCM is a double-barreled (theta) pipette, filled with 
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electrolyte solution, together with contacting quasi-reference counterelectrodes (QRCEs) 

in each channel. A thin meniscus droplet at the end of the pipette constitutes a mobile, 

nanoscopic electrochemical cell that can be brought into contact with a surface for high-

resolution electrochemical (ion-transfer and electron-transfer) imaging, with positional 

feedback and the possibility of elucidating topographical features. The technique is 

amenable to high-level quantitative analysis, and owing to the experimental design, high 

mass-transfer rates are readily achieved, allowing for the study of fast kinetic processes. 

In this review, we outline the fundamental basis of SECCM and some of its key 

applications. We begin by placing the development of SECCM in context by referring to 

earlier pipette-based imaging methods, micro- and nanofluidic devices, and 

electrochemical imaging in general. We conclude by highlighting potential future 

prospects and discuss the ongoing advances of the technique. 

 

SECCM is a recent addition to a large family of scanning electrochemical probe 

microscopy methods. Among these techniques, scanning electrochemical microscopy 

(SECM), originally developed in the late 1980s (2, 3), is one of the best known. Its 

operation is based on the use of an ultramicroelectrode placed closed to, and scanned 

across, a surface to quantitatively probe interfacial physicochemical processes (4--8). 

Many papers have been published on SECM, and this technique and its applications 

have been extensively reviewed (5, 9--11). Although powerful as a means of resolving 

surface phenomena, SECM has drawbacks that limit the materials and processes that can 

be studied. First, in (conventional) SECM there is no mechanism to maintain a constant 

tip-to-substrate separation. Consequently, this requires samples to be flat and precisely 

aligned and has limited SECM mainly to the use of disk-shaped tips with diameters of 1 

to 25 µm. Various efforts have been made to incorporate positional feedback into SECM 

to overcome this issue and enhance the spatial resolution (9, 12--24). Second, SECM 

requires the entire sample to be immersed in electrolyte solution and held at conditions 

wherein it is active for the time it takes to perform the experiments (up to hours), which 

may lead to changes in surface properties of both the sample and the tip. Finally, SECM 

is a remote sensing technique that relies on the diffusion of species between the sample 

surface and the tip. 

Although solid electrodes are the main type of probe in SECM, pipette-based probes 

have also been implemented, particularly for facilitated (25) and simple (26) ion transfer 
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across liquid/liquid interfaces. In this case, the pipette contains an electrolyte (e.g., 

organic solution) that is immiscible with the solution into which it is placed (e.g., 

aqueous solution), and the system operates in a similar manner to traditional SECM (6). 

Its applications include electrochemical imaging of electrode surfaces (5), local delivery 

of species to a substrate surface, and metal deposition (27). 

Soft stylus--type probes have also been developed to facilitate imaging of very large 

samples compared with those usually studied in SECM (28, 29). Due to the flexibility of 

these probes, which are pushed into contact with the substrate of interest, they can track 

topographical features without the need for complex electronic feedback circuits. A 

further enhancement is the use of arrays of these probes to reduce the experimental 

timescale (28). By inserting a microfluidic channel, with an integrated counter/reference 

electrode, into this type of probe, investigators have fabricated a fountain pen--like 

probe to allow the characterization of dry surfaces (30). Although it is an interesting 

innovation within scanning droplet-based techniques, this system is designed to have a 

large footprint to study extended areas of a sample. 

Pipette-based electrochemical methods, which use a liquid meniscus formed at the 

end of the pipette, were originally developed for high-resolution corrosion studies, in 

which it was necessary to confine measurements to a small area of surface. In its original 

form, the setup utilized a single-channel pipette probe with a diameter between 100 and 

1,000 m, with the end coated in a thick silicone rubber gasket to prevent evaporation 

and to define the electrode area (31, 32). The pipette was mounted on a microscope, 

allowing easy positioning on the surface, with the gasket at the end forming a tight seal. 

This setup allowed for the electrochemical interrogation of localized pitting sites on 

stainless steel (31, 32). An automated probe-positioning system was also attempted; in 

this system the substrate was mounted onto piezoelectric actuators and oscillated at the 

resonant frequency, with either a damping of the oscillation amplitude or a shift in the 

resonant frequency used to detect probe landing (33). To incorporate the possibility of 

moving the scanning droplet cell across the surface, a liquid droplet was used that was 

not confined by a gasket (34--36). 

Investigators subsequently developed a flow-through microcell reactor to collect 

products of reactions carried out at large current densities for off-line analysis of 

reactions (37). These authors used a dual-channel (theta) capillary with a footprint of 

several hundred micrometers across, defined by a silicone gasket. Electrolyte flow was 
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achieved via an external pump, and this approach has been used mostly for metal 

electrodissolution/corrosion studies (38--40). 

The scanning micropipette contact method  (41) uses a mobile micropipette 

(dimensions between hundreds of nanometers to tens of micrometers) to conduct high-

resolution electrochemical measurements. The technique operates in air (or another 

controlled environment), and the pipette is filled with an electroactive species in 

electrolyte solution, with a QRCE inserted. The probe is translated toward the surface 

with a bias applied between the QRCE and the working electrode, which has to be a 

(semi)conducting substrate, to carry out a redox reaction of the electroactive species 

inside the pipette. Once the liquid meniscus at the end of the probe makes contact with 

the surface, an electrochemical current is detected and the motion of the probe is halted 

to ensure that the probe itself does not make physical contact. Various local 

electrochemical measurements can then be made. The probe is then retracted and moved 

to a new position (in air) parallel to the surface, and a new approach is made. The 

electrochemical activity of the surface can be thus built up on a point-by-point basis, 

although the process is relatively slow. This technique has been used to demonstrate the 

electrochemical activity of the basal plane of highly oriented pyrolitic graphite (HOPG) 

and to study the corrosion activity of aluminum alloys (41). A simpler version of this 

technique, the microcapillary electrochemical method, allows microscopic cells to be 

readily made with small portions of complex substrates (42, 43). 

In parallel with the droplet-based techniques highlighted above and SECM, scanning 

ion conductance microscopy (SICM) was introduced in the late 1980s, purely as a 

noncontact topographical imaging technique (44). The system operates by generating an 

ion current between a QRCE in a sharp micro- or nanopipette and a second QRCE in the 

bathing solution. Probe positioning is achieved through a feedback mechanism based on 

a hindered ion flow between the two QRCEs, which occurs once the pipette probe comes 

into close proximity with a surface. Initially, the feedback mechanism was based on the 

mean conductance current between the QRCEs (44), but this mechanism proved to be 

rather unstable because it was sensitive to local changes in ionic strength and blockage 

of the electrode. Not until a decade later was positioning improved through the use a 

modulated ion current generated by a physical oscillation of the probe, perpendicular to 

the surface (45, 46). More recently, a multiple-approach curve methodology at an array 

of points over the surface was employed to study topographically challenging samples, 

such as neurons (47). Most SICM applications have been for topographical imaging of 
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live cells, although ion-transfer measurements have also been attempted more recently 

(46), and SICM can also be used for patch clamping (48, 49). The combination of SICM 

and SECM (50--52) also adds chemically specific flux mapping capabilities to SICM 

topographical imaging. 

The use of a modulated ion current due to probe oscillation has also been 

implemented for the patterning of surfaces with biomolecules from a theta pipette (53). 

The authors of this study used a double-barreled micro- or nanopipette that contained a 

QRCE in each barrel and was filled with an aqueous electrolyte solution. An ion current 

flowed through a liquid meniscus at the end of the pipette, and once surface contact was 

made, a modulation in the ion current was established due to a modulation in resistance 

(53, 54). This technique was operated either in air or under an immiscible organic 

solution. 

SECCM builds on the double-barreled micro- or nanopipette idea by combining it 

with simultaneous electrochemical measurements, primarily electron transfer at a 

substrate but also ion transfer. Furthermore, SECCM exploits the possibility of 

controlling the bias potential between the QRCEs to control mass transport. As we 

highlight herein, this innovation surpasses other droplet systems previously developed 

for electrochemical imaging and opens up many new possibilities for nanoscale 

electrochemistry and functional mapping. SECCM has already allowed us to perform 

studies and acquire information about electrochemical interfaces that was previously 

impossible or extremely challenging to obtain, and is revealing many new insights, as 

described below. 

2. SCANNING ELECTROCHEMICAL CELL MICROSCOPY SETUP AND 

INSTRUMENTATION 

2.1. Instrumentation 

Figure 1a shows the present configuration for SECCM. This setup is used to investigate 

the surface of interest, and when that surface is a (semi)conductor, a working electrode 

is formed whose area is defined by the contact area of the meniscus at the end of the 

pipette with the surface. A potential (V2) is applied between the QRCEs in the barrels to 

induce an ionic conductance current, idc, across the liquid meniscus. This bias is 

typically kept constant during the course of an experiment to maintain a constant ionic 

current across the liquid meniscus at the end of the pipette. The potential of the QRCEs 

can be floated (V1) with respect to ground while maintaining the constant bias potential 
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between the two QRCEs. By adjusting V1 while holding V2 fixed, the  the relative 

potential of a (semi)conducting substrate can be controlled with respect to the QRCEs. 

Morever, the current at (semi)conducting substrates can be measured as iWE. The 

effective potential of the substrate with respect to the QRCEs is approximately (V1 + 

V2/2) because the barrels of the pipette are typically symmetrical with the septum in the 

center of the pipette, and both barrels are the same size. The probe should be kept 

vertical with respect to the surface and the two QRCEs should be identical (55). This 

assignment of the effective potential of the substrate is further borne out in the measured 

reversible half-wave potentials for well-known redox couples that are consistent 

between SECCM and conventional voltammetry. 

<COMP: PLEASE INSERT FIGURE 1 HERE> 

Figure 1 (a) Schematic of the scanning electrochemical cell microscopy (SECCM) setup. 

A quasi-reference counter electrode is immersed in each barrel of a theta pipette probe, 

which is filled with the solution of interest. Piezoelectric positioners are employed for 

pipette z-modulation and displacement toward the sample, and for lateral scanning. (b) 

Field emission scanning--electron microscopy (FE-SEM) images of a double-barreled 

pipette used as the probe in SECCM, and FE-SEM images of imprints left from 

SECCM landings on amorphous carbon films, prove that the contact area is 

comparable to the probe dimensions. (c) SECCM approach curves of dc conductance 

current and the ac component are a function of z-piezoelectric extension toward the 

substrate. Three regions are identified: in air, when the meniscus has not yet established 

contact with the substrate; jump-to-contact; and contact.  

Movement of the pipette is controlled by three piezoelectric positioners. Our group 

has described two instrument configurations that differ in how the lateral (xy) 

movement of the pipette is achieved (1, 56). The first system employs a tip-scanning 

configuration in which the probe is mounted on a stack of three (xyz) piezoelectric 

positioners, which allows the probe to be moved in three dimensions while the sample is 

held stationary. The second system is a sample scanning configuration in which the 

probe is mounted on a single (z) piezoelectric positioner, which allows movement 

normal to the surface, while the sample is mounted on two (xy) piezoelectric 

positioners that allow lateral movement. For most applications, and particularly for high-

resolution imaging, the sample scanning configuration is preferred because it reduces 

possible cross talk between the piezoelectric positioners. However, this configuration 

does require the sample to be mounted on the piezoelectric positioners, and large mass 

and strain on the positioners should be avoided. Additionally, a voltage-wave generator, 

either external or built into a lock-in amplifier (software or hardware based) is used to 
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oscillate the probe, sinusoidally, normal to the surface and to extract the induced ac 

component of the ionic conductance (barrel) current (iac), which is used as a feedback 

signal to control the distance between the end of the probe and the surface. The 

piezoelectric positioners, potential control of the QRCEs, and current amplifiers are 

typically monitored and controlled through a data-acquisition or field-programmable 

gate array card that is, in turn, controlled from a computer running custom software 

(typically written in LabVIEW from National Instruments). 

2.2. Probes 

SECCM employs pulled (borosilicate or quartz) theta pipettes as probes. The spatial 

resolution depends on the size of the pulled theta pipette (Figure 1b), which can be 

fabricated to the desired dimensions (~100 nm to tens of micrometers, depending on the 

application) by use of a laser puller. Hitherto, the overwhelming majority of SECCM 

studies have employed aqueous electrolyte solutions. Therefore, after the pipette is 

pulled, the outer wall is usually silanized with dimethyldichlorosilane [Si(CH3)2Cl2], 

rendering it hydrophobic, which helps to confine the aqueous meniscus to the very end 

of the tip (57). Both barrels are then filled with an electrolyte solution and, if desired, a 

redox mediator of interest. A QRCE, typically an Ag/AgCl electrode (1, 55, 56, 58, 59) 

or a Pd-H2 electrode (60, 61), is inserted into each barrel. 

Finally, the local wetting properties of the substrate must be taken into account. 

Although the contact area is determined mostly by the size of the pipette, which provides 

a good rule of thumb for the spatial resolution, the contact radius may vary by up to 10-

20% of the pipette radius for particularly hydrophilic [such as (oxygen-terminated) 

polycrystalline boron--doped diamond (pBDD)] or hydrophobic (such as HOPG) 

substrates. In such cases, the contact area can be accurately determined by deposition 

experiments. 

2.3. Working Principles 

A potential bias is applied between the QRCEs in the barrels to induce an ion 

conductance current (idc) across the liquid meniscus formed at the end of the pipette, and 

changes in this conductance current are used as a feedback signal to position the probe at 

a set distance from the surface. Specifically, the probe is modulated, sinusoidally, 

normal to the surface, and once contact between the liquid meniscus and the surface is 

established, the ion current across the meniscus shows a periodic modulation at the same 

frequency of oscillation due to the reversible deformation of the meniscus. The 
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magnitude of the ac component (iac) of the conductance current is detected through the 

use of lock-in techniques and used as a feedback parameter for controlling the tip-to-

substrate separation. Typical oscillation frequencies and peak-to-peak amplitudes are 

approximately 70-300 Hz and 20-100 nm, respectively. Figure 1c shows typical 

responses of both idc and iac as a probe (1 µm in diameter, filled with 50 mM of KCl 

solution, using Ag/AgCl QRCEs) is carefully moved toward a surface (HOPG) at a 

constant speed (50 nm s
1

). Initially, the meniscus is not in contact with the surface, and 

the dc conductance current is constant, with a negligible ac component. At the point that 

contact is made between the meniscus and the surface, a large jump in idc is observed 

due to the sudden deformation of the meniscus (jump to contact with the surface), and iac 

increases accordingly by several orders of magnitude for the reasons given above. As the 

probe is moved closer to the surface (at 2 nm s
-1

), the meniscus is squashed between the 

probe and the surface, resulting in a decrease in idc but an increase in iac, due to the 

increasing gradient of idc with distance as probe height decreases. . Also, as highlighted 

above, in cases in which the substrate is (semi)conducting, one can make direct 

electrochemical measurements in which the contacted area between the meniscus and 

the substrate constitutes the working electrode (Figure 1b). 

2.4. Scan Procedure 

Once the meniscus is brought into contact with the surface, it is moved laterally while a 

constant tip-to-substrate separation is maintained (thereby ensuring meniscus contact 

with the surface); the probe height is adjusted to maintain constant iac. Two methods for 

updating the height of the probe, based on a user-defined iac set point, can be employed: 

a distance-based method and a time-based method. In the distance-based method, once 

the probe has moved a user-defined lateral distance, which is set depending on the 

pipette size, roughness of the sample, and desired spatial resolution, the ac magnitude is 

measured and the height of the pipette is updated on the basis of the difference between 

the ac magnitude and the set point. Then, the probe may pause, for a user-defined time, 

to record the substrate and conductance currents. This pattern is repeated as the probe is 

moved laterally across the sample. In the time-based method, the probe is moved 

laterally over the surface at a constant velocity and the height of the probe is 

simultaneously updated at set time intervals (typically on the millisecond scale, which is 

effectively continuous for the velocities used). Current signals are measured 

continuously as the probe is moved laterally across the surface. This method provides a 
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much higher spatial resolution of current measurement and reduces the time needed to 

record an image, making it the preferred method for most applications. The increased 

spatial resolution is particularly advantageous when using small-size tips and when the 

sample has small features. Our group now uses this approach exclusively. 

Two-dimensional images of the electrochemical activity of a surface are typically 

constructed from a series of parallel line scans. During each line scan, the probe is 

moved forward over a line and then often reversed over the same line before being 

moved to the next line. Thus, from a single scan, two sets (one from forward lines and 

one from reverse lines) of maps can be constructed for the surface current (working 

electrode activity), the dc ion conductance current, the magnitude of the ac component 

of the conductance current, and surface topography (from the height of the probe) as 

function of lateral pipette position. Figure 2 shows these sets of data for a HOPG 

sample (56). Note that in addition to the ac magnitude, the phase can also be measured, 

although we have not considered the phase in detail in SECCM studies. 

<COMP: PLEASE INSERT FIGURE 2 HERE> 

Figure 2 Set of maps acquired simultaneously during scanning electrochemical cell 

microscopy scans of highly oriented pyrolitic graphite for the reduction of Ru(NH3)6
3+

 

at the reversible half-wave potential. Both forward (left) and reverse (right) scans are 

shown. (a) The working electrode response. (b) The ionic dc conductance current (idc) 

between the barrels in the pipette. (c) The ac component of the ion current (iac) used as a 

feedback parameter. (d) A topographical map from the z-piezoelectric displacement. 

Adapted with permission from Reference 56. Copyright 2012, Wiley-VCH. 

The surface current map identifies local changes in surface activity and is of primary 

interest when investigating the electroactivity of surfaces. Surface kinetic measurements 

can be obtained from this map with the use of appropriate modeling techniques (55, 58, 

59). The dc conductance current map is often relatively featureless during the mapping 

of electrode substrates, although it can be a sensitive way to identify variations in the 

size of the meniscus, for example, due to changes in local wetting properties; in Figure 

2b, the meniscus moves across the hydrophobic HOPG surface and intermittently 

encounters hydrophilic (monolayer and bilayer) step edges. Moreover, changes in the 

ionic composition of the meniscus during the scan, for instance, from the dissolution of 

the substrate or by local ion uptake at the substrate, can be identified from the dc 

conductance current map (1). 

The ac conductance magnitude is used as the feedback parameter to keep a set 

distance between the probe and the surface, and as such, this map is typically flat. 
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However, as in atomic force microscopy (AFM), this error signal map can help identify 

certain features, such as the edges in the HOPG surface in Figure 2c. Finally, the probe 

height as a function of probe lateral position is used to generate a two-dimensional map 

of the apparent surface topography, and remarkable resolution is evident (e.g., Figure 

2d), particularly given that a droplet employed for imaging is typically several hundreds 

of nanometers in diameter . For the different maps described above, comparisons 

between the forward and reverse line scans allow for the identification and validation of 

features and enable identification of any changes in the surface activity (e.g., due to 

fouling). 

3. MODELING AND SIMULATION OF SCANNING ELECTROCHEMICAL CELL 

MICROSCOPY 

3.1. Simulation Overview 

A quantitative description of mass transport is crucial for understanding and interpreting 

SECCM experimental data. A finite-element method (FEM) model describes the main 

features of mass transport in SECCM (55), which we briefly highlight here. Figure 3a 

shows the geometry used for the SECCM probe, meniscus, and substrate (defined herein 

as the working electrode). The theta pipette is approximated to a capped, truncated cone, 

where the cap represents the opening, and the meniscus is typically represented with a 

cylinder; variations of this geometry have been explored in some detail (55). The key 

geometrical parameters to consider in describing the ion conductance across the 

meniscus between the QRCEs, and mass transport to the substrate, are the internal radius 

of the pipette (rp), the semiangle (θ), the thickness of the central septum (tw), and the tip-

to-substrate separation (or, equivalently, the meniscus height mh) and the effective bias 

in the simulated domain (EfExperimentally, rp, θ, and tw can be measured accurately 

using field emission scanning electron microscopy (FE-SEM); the height of the 

meniscus is derived from the experimental data with the aid of simulation (see Section 

3.2) (55, 58, 59) 

<COMP: PLEASE INSERT FIGURE 3 HERE> 

Figure 3 (a) Schematic of the scanning electrochemical cell microscopy (SECCM) 

assembly showing the simulated domain and critical parameters. (b) Simulated 

potential field for a pipette with rp  0.5 µm, θ  7°, mh  0.4 µm, and Ef  0.5 V. (c) 

Comparison between the idc and iac experimental and simulated approach curves for a 

pipette with rp  0.5 µm and θ  7° that is filled with 50 mM of KCl and oscillated at an 

amplitude of 50 nm. (d) Experimental cyclic voltammetry scans for the oxidation of 2 
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mM of FcTMA
+
 (ferrocenylmethyl) trimethylammonium) in 50 mM of KCl, within an 

SECCM probe with rp  0.6 µm, mh  0.15 µm, and θ  8.5°, for potential differences 

between the barrels of 0, 0.1, 0.2, 0.3, 0.4, and 0.5 V. (e) Comparison between the 

response of the limiting current, iWE lim, for experimental data (circles) and data from 

simulations (stars) for the probe used in panel d. Adapted with permission from 

Reference 55. Copyright 2012, American Chemical Society. 

3.2. Potential Field 

Mass transport within the SECCM probe is due primarily to migration and diffusion of 

chemical species, which can be elucidated by solving the Nernst--Planck equation: 

( F )
j

j j j j j j j

c
D c z u c V c R

t


       


u . (1) 

Here, cj is the concentration, Dj is the diffusion coefficient, zj is the charge, Rj is the rate of 

any homogeneous reaction within the domain, uj is the ionic mobility of species j, t is time,  V 

is the electric field, and u is the velocity vector of the solution within the pipette. We assume 

that u is zero because the contribution due to electro-osmosis (62--64) is negligible compared 

with those from diffusion and migration for the experimental conditions employed so far, as 

determined by the Smoluchowski equation (65). Figure 3b shows the potential field for a 

pipette with rp  0.5 µm, θ  7°, and mh  0.4 µm that is filled with 50 mM of KCl, where K
+
 

ions have a mobility of uK+  7.3  10
8

 m
2
 s

-1
 V

-1
 and Cl


 ions have a mobility of uCl-  7.6  

10
8

 m
2
 s

-1
 V

-1
 at T  298 K (66). A potential field of 0.5 V was set between planes p1 and p2. 

The gradient of the potential field is steepest in the areas of highest resistance, near the tip of 

the pipette, and within the meniscus. When there is no reaction within the pipette or at the 

surface, the ion conductance is directly proportional to the potential bias between the barrels 

(55). 

The tip-to-substrate separation in SECCM can readily be determined by analysis of 

the ac and dc components of the ion conductance current as a function of distance when 

the meniscus is in contact with the substrate. As the tip-to-substrate separation decreases 

initially, idc decreases but iac increases. The increase in iac is the result of the increasing 

gradient of idc with decreasing height . There is excellent agreement between the 

experimental and simulated approach curves for the example of a pipette with rp  0.5 

µm and θ  7° that was filled with 50 mM of KCl and oscillated at an amplitude of 50 

nm (70 Hz) (Figure 3c). Furthermore, the height of the pipette above the surface can 

evidently be set and deduced by monitoring both iac and idc. 
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3.3. Electrochemical Reaction at the Substrate Working Electrode 

As discussed above, data from simulations of the voltammetric response of the working 

electrode in SECCM agree with data from experiments (55). Figure 3d shows typical 

SECCM cyclic voltammetry data for a probe with rp  0.6 µm, mh  0.15 µm, and θ  

8.5° that was filled with 2 mM of (ferrocenylmethyl) trimethylammonium (FcTMA
+
) as 

the hexafluorophosphate salt in 50 mM of KCl; FcTMA
+
 underwent a one-electron 

oxidation as the potential of the substrate was swept from 0.0 V to 0.65 V versus 

Ag/AgCl. The data illustrate that increasing the potential difference between the QRCEs 

in the barrels of the pipette (V2 in Figure 1a), with values of 0, 0.1, 0.2, 0.3, 0.4, and 0.5 

V (Figure 3d), increases the working electrode limiting current because of the 

increasing contribution to mass transport from migration. Figure 3e further shows that 

the steady-state experimental limiting current can be simulated to a high level of 

accuracy (55). 

In practice, two approaches can simulate reactions at the substrate working electrode 

surface, carefully balancing a trade-off between accuracy and computational resources: 

the dynamic field and static field approaches. In the dynamic field approach, the electric 

field that controls the migration of ions between the barrels of the pipette is recalculated 

for the changing conductivity within the SECCM probe arising from the working 

electrode reaction. In the static field approach, the potential field is calculated for the 

initial conditions (with no reaction occurring at the substrate) and kept constant when a 

substrate reaction is introduced. In other words, the electric field is assumed not to be 

significantly perturbed by the substrate reaction. The latter approximation is less 

computationally demanding and provides a reasonable approximation for cases in which 

the substrate reaction has a negligible impact on the conductivity of the solution within 

the meniscus, that is, where there is a large concentration of supporting electrolyte with 

respect to the redox-active species. The dynamic field is used for cases in which the 

conductivity is significantly affected by the substrate reaction, such as (a) when the 

supporting electrolyte concentration is similar to that of the redox-active species and (b) 

when the local solution conductivity in the meniscus and at the end of the pipette is 

likely to change significantly (typically by more than 5%). 

4. ILLUSTRATIVE EXAMPLES OF SCANNING ELECTROCHEMICAL CELL 

MICROSCOPY 
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4.1. Novel Carbon (Electrode) Materials 

A major focus of SECCM has been carbon materials, which are of great interest for 

many electrochemical applications because of their exceptional electronic and optical 

properties (67), chemical and mechanical stability, and ease of  functionalization (68). 

There are different allotropes of carbon depending on the atomic hybridization, yielding 

large variations in the intrinsic properties. For example, diamond is intrinsically an 

insulator (69), whereas graphene is a semimetal; it exhibits the highest electron 

mobilities ever reported (70). Furthermore, different macroscopic arrangements of 

certain carbon materials are also possible; such arrangements range from aligned single-

walled nanotube (SWNT) wires to three-dimensional SWNT forests and from single- to 

multilayer graphene. Certain configurations enhance material-specific electrochemical 

properties (58, 71, 72), but unless the fundamental nature of heterogeneous electron 

transfer is understood, it is difficult to optimize these devices. SECCM has allowed us to 

study and understand these materials by using micro- and nanosized mobile 

electrochemical cells that can isolate the different components of each material of 

interest; this technique requires little preparation, encapsulation, or lithography of the 

sample, which might otherwise influence the response. Moreover, SECCM images can 

be correlated with information from complementary analytical and microscopy 

techniques to provide a comprehensive view of structure and reactivity. 

4.2. Point Measurements: From Voltammetry to Local Capacitance 

A major advantage of SECCM is that the position of the pipette can be controlled 

precisely to confine electrochemical measurements to a single point on a surface of 

(sub)micrometer dimensions. This capability is particularly powerful for samples on 

which the features are irregularly shaped or spaced, or would otherwise prove difficult to 

prepare or encapsulate in the form of micro- and nanoscale electrodes with conventional 

lithographic techniques. The latter aspect is particularly important as surface 

contamination associated with some lithographic processing may pose a problem (73). 

In contrast, SECCM provides a different route to assembling nanoscale electrochemical 

cells: A small droplet is simply brought to a desired location on a surface of interest. 

Although such measurements can, in principle, also be performed with single-barreled 

pipettes, the use of a theta pipette offers an extra degree of control over the mass 

transport of charged species (Figure 2d,e) and allows estimation of the meniscus height 

(Figure 2c). 
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As an exemplar system, point measurements have been made on pBDD (61, 74), 

which is a heterogeneous electrode material due to variations in boron uptake by 

different facets during pBDD growth that cause variations in local dopant concentration 

(75). Such variations in dopant concentration, as well as the possible presence of sp
2
 

carbon contamination (especially at grain boundaries), have led to considerable debate 

on the active sites for electron transfer (ET) on pBDD (75--78). Using SECCM, we have 

made microscale voltammetric measurements on regions of the surface with varying 

boron concentrations; the results indicated a very strong effect of the local substrate 

properties on the electron-transfer kinetics for the simple inner-sphere redox mediator 

Fe
2+/3+ 

(61). SECCM has also been employed, as part of a multimicroscopy approach, to 

perform localized capacitance measurements on various pBDD facets to link 

electrochemical reaction rates with the local boron concentration (74). In this study, 

variations in localized electron-transfer rates were visualized with intermittent contact 

(IC)-SECM (21) and were quantified by FEM modeling. Local boron concentrations 

were determined using FE-SEM and micro-Raman spectroscopy measurements. To 

measure local capacitance values with SECCM, the authors took care to minimize stray 

capacitance, allowing the measurement of capacitance values in facets with different 

different characteristic boron concentrations at micrometer-sized contact areas. From 

these capacitance values, the local density of electronic states was found to correlate 

with the local reaction kinetics, indicating that variations in localized reactivity are 

associated with variations in dopant concentration (74). 

Because of its ability to confine electrochemical measurements on complex 

substrates, SECCM has been used to study the electrochemical activity of vertically 

aligned (SWNT) forests (79). In this application, SECCM allowed the experimenters to 

access the ends and the sidewalls of the nanotubes independently; the forest was in its 

pristine form, and no photolithography or encapsulation was needed. To verify that the 

contact area was similar for measurements at the ends and the sidewalls, the authors 

measured the ion current between the two barrels of the SECCM probe, which is a 

reasonable indicator of meniscus size for the experimental conditions employed. This 

study highlighted that the nanotube sidewalls are highly electrochemically active for 

outer-sphere redox complexes such as Ru(NH3)6
3+/2+

 and FcTMA
+/2+

, and that 

comparable electrochemical activity is found at SWNT end sites. Furthermore, the 

results showed that SWNT ensembles can be used as electrodes in their pristine form 
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and that postprocessing to open SWNT ends is unnecessary for the redox reactions 

considered.  

Finally, we have also exploited the ability of SECCM to form a nanoscopic 

electrochemical cell to perform nanoparticle landing experiments (92). The probe was 

filled with a colloidal solution of gold nanoparticles (AuNPs) in an electrolyte solution, 

and the meniscus was brought into contact with a ‘collector’ electrode. The collector 

electrode was held at a potential where an electrocatalytic reaction occurred on the  

AuNP but not on the collector electrode. Consequently, the arrival of AuNPs at the 

electrode surface resulted in a stepwise increase in the current at the collector electrode, 

and each current step could be assigned to the (cumulative) response of a single 

nanoparticle. Because electrodes with small areas are required to limit the number of 

nanoparticle landings and to minimize the background current on the collector electrode, 

such experiments are typically performed using an ultramicroelectrode immersed in an 

electrolyte solution (93,94,95) as a collector electrode. In our approach, rather than 

decreasing the area of the collector electrode through the manufacture of an 

ultramicroelectrode, we employed SECCM to limit the area in contact with the solution 

(92). This has a number of advantages. First, the electrode area is smaller than that of a 

typical UME, resulting in lower background currents, which allowed us to measure 

smaller currents from the nanoparticle reaction. Second, it allows the use of a wide range 

of materials for the collector electrode, including materials which cannot be shaped into 

an ultramicroelectrode. Finally, we are able to make and break the cell at will, for 

example after the landing of a predetermined number of particles. Using this SECCM-

based approach, we were able to detect the landing of AuNPs on HOPG (which is 

particularly adventageous because of its low background current) at a potential where 

dissolved oxygen is reduced on the AuNP, even though the current step per AuNP was 

less than 1 pA. Furthermore, we were able to land a single NP on a carbon coated 

transmission electron microscope (TEM) grid and correlate its electrochemical reactivity 

with the structural properties obtained with TEM, thereby enabling structure-activity 

relationships to be studied at the level of a single nanoparticle. 

4.3. Mapping and Visualizing Heterogeneous Electron Transfer at the Nanoscale 

SECCM is at its most powerful when used to scan across the substrate of interest to 

produce x--y maps of surface reactivity, simultaneously with topography and ion 

conductance. This technique is particularly useful for elucidating variations in reactivity 
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as a function of the properties of the substrate electrode. We have employed SECCM to 

map the electrochemical reactivity of several carbon materials for which there has been 

controversy on the nature of the active sites for electron transfer (Figure 4). For 

example, as discussed above, pBDD is inherently heterogeneous due to variations in 

dopant density across the different facets. Electron transfer on a pBDD surface might be 

dominated by the grain boundaries or other hot spots (76). Figure 4 shows an example 

of a SECCM reactivity map of pBDD for the oxidation of the neurotransmitter serotonin 

(5-hydroxytryptamine), a complex multistage reaction (61). This map clearly shows 

patterns of electrochemical activity that strongly correspond to the local dopant density 

obtained with FE-SEM. In addition, no enhanced current was observed at grain 

boundaries or at other hot spots. Similar results were found for the outer-sphere couple 

FcTMA
+/2+

 and the ‘simple’ inner-sphere couple Fe
2+/3+ 

(61).  

Importantly, the reactivity mapping of serotonin oxidation illustrates that SECCM can 

be employed to study reactions in which the product blocks the electrode surface 

because the reaction is notorious for electrode fouling (72, 80--82). Although electrode 

fouling was still observed in the SECCM study, the reaction product was left behind 

during imaging when the tip was moved to a new position and a reactivity map was 

readily obtained, demonstrating the strength and versatility of SECCM as an imaging 

technique. 

<COMP: PLEASE INSERT FIGURE 4 HERE> 

Figure 4 Summary of a wide range of applications of scanning electrochemical cell 

microscopy (SECCM). Single-point measurement for voltammetry (55). 

Electrochemical interrogation of nanosized structures such as nanoparticles (adapted 

with permission from Reference(60). Copyright 2011, American Chemical Society.) and 

nanotubes (adapted with permission from Reference (59). Copyright 2012, National 

Society of Sciences of the United States of America.)  Investigation of heterogeneous 

electrode materials with examples of exfoliated graphene, highly oriented pyrolitic 

graphite, (adapted with permission from Reference (56). Copyright 2012, Wiley-VCH.) 

and polycrystalline boron--doped diamond (pBDD) (adapted with permission from 

Reference (61). Copyright 2012, American Chemical Society.)  Abbreviations: AFM, 

atomic force microscopy; FE-SEM, field emission scanning--electron microscopy. 

Within the family of carbon materials, sp
2
 carbon--based materials such as graphene 

and carbon nanotubes are attracting particular attention. Different types of graphene, 

such as mechanically exfoliated graphene and chemical vapor deposition (CVD) grown 

graphenehave been interrogated with SECCM (Figures 4, 5). Among them, graphene 

grown by CVD methods on nickel substrates consists of a heterogeneous, continuous 

layer of single-layered and multi-layered micrometer-sized graphene flakes (83) and is 
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ideal for demonstrating the capabilities of SECCM as an electrochemical mapping 

technique. The random orientation, shape, and distribution of these flakes make their 

individual interrogation incompatible with other techniques. For SECCM studies, the 

size of the double-barreled pipettes employed was fine-tuned, according to the average 

size of the flakes, to ensure single-flake interrogation and to minimize the contributions 

from surrounding flakes. Figure 5 compares a typical electrochemical map for the one-

electron oxidation of the outer-sphere mediator FcTMA
+
 obtained via SECCM with with 

images from complementary techniques, such as AFM, optical microscopy, and micro-

Raman (58). Investigators usually consider three primary Raman peaks  to assess the 

number of layers, doping, functionalization, lattice defects, and physical damage of 

graphene (84). The Raman spectra for four different flakes confirmed that darker regions 

on the optical microscopy images corresponded to thicker graphene flakes. These data 

sets revealed a very strong correlation between the electrochemical activity of graphene 

and the number of graphene layers; multi-layered flakes exhibited the highest 

electrochemical activity. These findings have important implications for the design and 

optimization of new graphene-based technology, particularly for electrochemical 

applications. 

<COMP: PLEASE INSERT FIGURE 5 HERE> 

Figure 5 Characterization of the same region of chemical vapor deposition—grown –

graphene on an Si/SiO2 substrate with (a) scanning electrochemical cell microscopy 

substrate-current map, (b) optical microscopy, and (c) atomic force microscope 

topography. There is a striking correlation between structure and activity. (d) 

Complementary micro-Raman (633-nm laser) single-point measurements of four 

regions (inset) to determine graphene structural characterization in greater detail. 

Adapted with permission from Reference 58. Copyright 2012, American Chemical 

Society.   

HOPG is interesting both in its own right and as a comparative case for graphene 

studies, given that it comprises an infinite number of stacked graphene layers. By 

studying the HOPG basal surface, with a step spacing significantly larger than the 

pipette diameter, researchers investigated the HOPG basal plane electrochemically, in 

isolation from the response on the step edges, for the first time (56)(96,97). Figure 2 

shows SECCM maps for the one-electron reduction of Ru(NH3)6
3+

 at the reversible half-

wave potential. The surface current maps (Figure 2a) show that the entire surface is 

electrochemically active. The HOPG basal plane supports fast electron transfer (close to 

reversible) for two commonly used redox probes, Ru(NH3)6
3+/2+

 and Fe(CN)6
4-/3

, even 

under the high mass-transport rates delivered by the SECCM setup (see Section 3.3). In 
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contrast, a previous model derived from conventional macroscopic measurements 

considered the basal surface to be completely or largely inert (85). Thus, SECCM is 

valuable in being able to test such models for surface activity directly. Reasons for the 

difference between SECCM studies and earlier work have been assessed and discussed 

fully (96). 

4.4. Intrinsic Electrochemical Properties of Nanomaterials 

A further advantage of SECCM is that the feedback mechanism for the tip-to-sample 

separation does not rely on the electrical nature of the substrate, enabling one to image 

substrates that are (partially) insulating. This advantage allowed the study of two-

dimensional networks of SWNTs grown by CVD on silicon/silicon oxide, which 

constituted only 0.3% of the otherwise nonelectrochemically active surface. In this case, 

the theta pipettes were employed (~250 nm) that were smaller than the typical spacing 

between nanotubes  (59) , which allowed the acquisition of maps of electrochemical 

activity with high spatial resolution and to extract information from individual 

nanotubes The electrochemical activity of the SWNTs was studied through outer-sphere 

redox couples, such as FcTMA
+/2+

 and Ru(NH3)6
3+/2+

. The resulting electrochemical 

maps  (Figures 4, 6) revealed that the nanotubes had substantial activity. This finding, in 

addition to the lack of current enhancement or hot spots across the surface (for example, 

at nanotube ends), suggests a new model for SWNT electrochemical activity in which 

the sidewalls should be considered active components. 

<COMP: PLEASE INSERT FIGURE 6 HERE> 

Figure 6 (a) Scanning electrochemical cell microscopy (SECCM) image (working 

electrode response) of a two-dimensional single-walled nanotube (SWNT) network on 

Si/SiO2, highlighting an individual line scan. (b) The motion of the SECCM nanoprobe 

across a single SWNT, resulting in a peak profile. Also shown are scenarios in which 

one or three defects are present on a sidewall that is otherwise inert. (c) Experimental 

data for an individual SWNT peak profile during a line scan compared with simulated 

data from the case of a fully active sidewall; there is activity at only one point defect or 

three point defects. Adapted with permission from Reference 59. Copyright 2012, 

National Society of Sciences of the United States of America. 

To further confirm this finding and eliminate the possibility that only defect points in 

the sidewalls are responsible for heterogeneous electron transfer at SWNTs, the 

investigators analyzed scan profiles across individual nanotubes, highlighting a further 

powerful feature of SECCM for kinetic mapping (59). As the SECCM meniscus scans 

from the inert SiO2 surface over a nanotube (perpendicular to the scan direction), a 
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gradual increase (and then decrease) in the working electrode current is measured 

because of a gradual increase (and then decrease) in the area of the nanotube being 

contacted by the droplet. This behavior arises from small incremental portions of 

nanotube that are more or less equally electrochemically active when accessed at each 

step (typically 5 nm) in the scan. FEM model simulations were used to validate these 

results, and scan profiles were simulated for a fully active SWNT, together with one- 

and three-point defects in the accessed area on an otherwise inactive SWNT; these 

values are reasonable estimates of the typical defect density and maximum defect 

density on this type of SWNT (86). For the  cases in which only point-defects were 

considered to be electrochemically active, the experimentally measured current could 

not be match by the currents obtained from FEM simulations (Figure 6), even when 

unrealistically high standard electron transfer rate constants (k
0 

> 10
3
 cm s

-1
) were 

assigned to the point defects. Thus, SECCM line profiles are very powerful in 

distuingishing between different models for characteristic activities in nanoscale 

materials, that would be difficult to achieve with conventional techniques. The ability to 

use SECCM on (partially) non-electrochemically active substrates was further exploited 

to study the reactivity of discreet individual platinum nanoparticles (PtNPs) (60). PtNPs 

of ~100-nm size were electrodeposited on an isolated SWNT, which acted as a wire to 

electrically connect the PtNP; the interparticle spacing was in the micrometer range. 

SECCM was used to locate and investigate the potential-dependent reactivity of 

individual PtNPs. Figure 4 shows a typical image. These particles were subsequently 

characterized with AFM and FE-SEM, enabling a direct correlation between the 

reactivity of the PtNP and its size and shape. The results showed that subtle variations in 

nanoparticle morphology can lead to dramatic changes in the (potential-dependent) 

activity, which has important implications for the design and optimization of 

nanoparticles in electrochemical applications. Also, the SECCM setup can be employed 

to study events with very low currents (down to ~10 fA over a 40 ms period, which 

corresponds to only ~2,500 electron-transfer events). This study demonstrated SECCM’s 

major potential for investigations of electrode reactions at the single-nanoparticle level 

by drawing on the technique’s excellent spatial and current resolution. Such studies 

could help investigators gain a true fundamental understanding of electrocatalytic 

processes at the nanoscale. 

4.5. Surface Modification and Patterning 
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Most SECCM studies have focused on measuring local heterogeneities in the 

electrochemical response of various substrates. However, this technique can deliver 

species to a substrate in a controlled manner, thereby modifying the underlying 

substrate. Because the contact area between the meniscus and the surface defines the 

resolution of any modification and can be controlled by changing the probe size, it is 

possible to create or modify surface features with a resolution of < 100 nm, determined 

by the probe size. 

Recent studies have used single-barreled pipettes, which have no positional feedback 

mechanism, to construct copper and platinum wires (87), conducting polymer structures 

(88, 89), and individual microcrystals (90). Theta pipettes have previously been used to 

construct patterns of biomolecules (53) and water droplets (54) on surfaces because they 

have a positioning system based on a modulated ion current, which is also the basis for 

positioning in SECCM. This robust feedback mechanism, coupled with the proven 

ability of SECCM to perform and monitor local electrochemical processes, is expected 

to help improve existing meniscus-based fabrication methods for the electrosynthesis of 

new structures from many different starting materials. We have demonstrated SECCM 

‘reactive patterning’ to reveal the active sites for catechol oxidation at the basal surface 

of HOPG at the nanoscale (97). 

4.6. Interfacial Ion-Transfer Processes 

Although this review focuses mainly on SECCM as a technique to investigate the local 

electrochemical properties of electrically conducting substrates, the methodology is 

adaptable to the study of other systems. For example, the conductance current between 

the barrels can be tracked to follow processes that alter the conductivity of the droplet. 

The SECCM setup has been used to image ion uptake into a dental enamel sample (1), 

and static theta pipettes have been used in bulk solution to probe ion transfer (91). In the 

case of dental enamel, the localized uptake of ions by the sample causes a decrease in 

the conductance current that is mapped across the surface (1). Similarly, SECCM could 

readily be employed to study crystal growth or dissolution of ionic materials and 

minerals on a local scale. In such cases, SECCM would permit control over the flow of 

ions to the substrate by changing the bias between the barrel electrodes. 

5. CONCLUSIONS AND PROSPECTS 
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In a relatively short time, SECCM has become a powerful new technique for 

electrochemistry and interfacial science, and it has a proven ability to quantitatively map 

interfacial charge transfer at the nanoscale. The technique is grounded on well-

established electrochemical and general scanning probe microscopy principles and is 

underscored by a robust model for mass-transport and electric field calculations. This 

combination of experimental design and numerical modeling allows the ready 

interpretation of SECCM images and data in terms of key physicochemical processes, as 

illustrated by the examples discussed in this review. 

SECCM is especially notable for providing a new understanding of the 

electrochemical behavior of carbon electrodes and allowing longstanding models for 

heterogeneous electron transfer to be rigorously tested and assessed. For example, 

SECCM imaging indicates that the basal surface of highly oriented pyrolitic graphite has 

considerable electroactivity. Similarly, we have elucidated the evolution of electrode 

kinetics from monolayer to multilayer arrangements of CVD grown graphene for the 

first time. pBDD electrodes have long been known to display spatially heterogeneous 

electron transfer rates, but the structural controls could not be established with 

conventional SECM imaging. In contrast, SECCM (combined with IC-SECM) has 

revealed detailed new information on local electron transfer and, furthermore, has 

allowed the visualization of complex (blocking) processes, which would have been 

difficult to achieve with SECM. 

Given the great interest in nanostructured materials in electrochemistry, whose 

applications range from electrocatalysis to sensing, SECCM is a natural technique for 

selecting and visualizing the behavior of key components and relating this activity to 

structure at the nanoscale. The SECCM approach is particularly attractive because 

nanomaterials require little processing and encapsulation and can be studied in a (nearly) 

pristine state. SECCM  has proven particularly powerful in elucidating and comparing 

the electrochemical activity of SWNTs: In studies of both two-dimensional networks 

and three-dimensional forests, it has demonstrated that the sidewall is highly active for 

outer-sphere redox couples and that sidewalls and closed ends have similar activity. 

Subtle differences in the morphology of nominally similar PtNPs cause significant 

variation in electroactivity; SECCM can target individual NPs within an ensemble or 

deliver individual NPs to an electrode surface for investigation. In all of these 

applications, the enhancement of information content through complementary 

microscopy and spectroscopy techniques on the same nanostructures has been crucial. 
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In the future, we expect SECCM to become a powerful method for nanofabrication 

and patterning under electrochemical control, particularly because our reaction imaging 

research has demonstrated that this technique can be applied to substrate materials 

ranging from electrical conductors to insulators. In this context, SECCM is expected to 

provide greater control and information content, given that it enables adaptive patterning 

“on the fly.” 

Given the importance of interfacial ion-transfer processes in many areas and the 

difficulty of probing such processes on a local scale, SECCM could also have a 

significant impact in this area by functioning as a local conductivity cell to visualize ion 

uptake and release from surfaces and interfaces. Regarding the SECCM technique itself, 

it will be possible to further reduce the probe size, although doing so will probably 

require further development of the SECCM model to accommodate for possible 

substrate and pipette double-layer effects. There are also many options for enhancing the 

probes, such as building in additional channels for delivery, detection, and monitoring of 

interfacial processes. 
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