135 research outputs found

    Oncologic impact of delay between diagnosis and radical nephroureterectomy

    Get PDF
    PurposeThis study aimed to evaluate the oncological outcome of delayed surgical wait time from the diagnosis of upper tract urothelial carcinoma (UTUC) to radical nephroureterectomy (RNU).MethodsIn this multicenter retrospective study, medical records were collected between 1988 and 2021 from 18 participating Taiwanese hospitals under the Taiwan UTUC Collaboration Group. Patients were dichotomized into the early (≤90 days) and late (>90 days) surgical wait-time groups. Overall survival, disease-free survival, and bladder recurrence-free survival were calculated using the Kaplan–Meier method and multivariate Cox regression analysis. Multivariate analysis was performed using stepwise linear regression.ResultsOf the 1251 patients, 1181 (94.4%) were classifed into the early surgical wait-time group and 70 (5.6%) into the late surgical wait-time group. The median surgical wait time was 21 days, and the median follow-up was 59.5 months. Our study showed delay-time more than 90 days appeared to be associated with worse overall survival (hazard ratio [HR] 1.974, 95% confidence interval [CI] 1.166−3.343, p = 0.011), and disease-free survival (HR 1.997, 95% CI 1.137−3.507, p = 0.016). This remained as an independent prognostic factor after other confounding factors were adjusted. Age, ECOG performance status, Charlson Comorbidity Index (CCI), surgical margin, tumor location and adjuvant systemic therapy were independent prognostic factors for overall survival. Tumor location and adjuvant systemic therapy were also independent prognostic factors for disease-free survival.ConclusionsFor patients with UTUC undergoing RNU, the surgical wait time should be minimized to less than 90 days. Prolonged delay times may be associated with poor overall and disease-free survival

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link

    Biomimetic Composite Scaffold Containing Small Intestinal Submucosa and Mesoporous Bioactive Glass Exhibits High Osteogenic and Angiogenic Capacity

    No full text
    Biomaterials with excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. Decellularized matrix from porcine small intestinal submucosa (SIS) has attracted particular attention for tissue regeneration because it has strong angiogenic effects and retains plentiful bioactive components. However, it has inferior osteoinductivity and osteoconductivity. In this study, we developed porous composite of SIS combined with mesoporous bioactive glass (SIS/MBG) with the goal of improving the mechanical and biological properties. SIS/MBG scaffolds showed uniform interconnected macropores ~150 µm), high porosity (~76%), and enhanced compressive strength (~0.87 MPa). The proliferation and osteogenic gene expression (Runx2, ALP, Ocn, and Col-Iα) of rat bone marrow stromal cells (rBMSCs) as well as the proliferation, angiogenic gene expression (VEGF, bFGF, and KDR), and tube formation capacity of human umbilical vein endothelial cells (HUVECs) in SIS/MBG scaffolds were significantly upregulated compared with nonmesoporous bioactive glass (BG)-modified SIS (SIS/BG) and SIS-only scaffolds. Western blot analysis revealed that SIS/MBG induced rBMSCs to osteogenic differentiation through the activation of Wnt/ß-Catenin signaling pathway, and SIS/MBG enhanced angiogenic activity of HUVEC through the activation of PI3k/Akt pathways. The in vivo results demonstrated that SIS/MBG scaffolds significantly enhanced new bone formation and neovascularization simultaneously in critical-sized rat calvarial defects as compared with SIS/BG and SIS. Collectively, the osteostimulative and angiostimulative biomimetic composite scaffold SIS/MBG represents an exciting biomaterial option for bone regeneration
    corecore