1,061 research outputs found

    The role of Artificial Intelligence, Big Data and the Internet of Things in the acceleration of circular economy

    Get PDF
    Abstract. Circular economy is the alternative to the current linear (make, use, dispose) model. In business model literature, circular economy has emerged recently, affirming more practical methods to solving business challenges and developing innovative solutions for business processes, directly concerning the climate crisis. Circular business models propose to change the product-oriented business models in which the main objective of firms is maximizing profits by the number of products sold, to a service-based business model in which firms make profits by the services they offer. In this context, business models like Product-Service Systems have been identified as enablers of Circular Economy in companies. As a result of this, data and digital technologies presented by Industry 4.0 or the 4th Industrial Revolution, have proven to be tremendous catalysts of circular economy for industries. But despite this knowledge there is very limited implementation of circular economy processes and of Industry 4.0 tools for its acceleration. Academic literature highlighting the specific co-relation of digital technologies to Circular Economy is also limited. There is still a lot of scope to explore the nexus of these topics, by academicians and industry alike. In an attempt to bridge this gap, this study aims to provide an analysis in the role played by Industry 4.0 tools, especially Artificial Intelligence, Big Data and the Internet of Things, in the implementation and acceleration of Circular Economy. Based on the findings of the empirical research, the role of the selected Industry 4.0 tools is examined and discussed

    Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells

    Get PDF
    The cytokine IL-15 is required for natural killer (NK) cell homeostasis; however, the intrinsic mechanism governing this requirement remains unexplored. Here we identify the absolute requirement for myeloid cell leukaemia sequence-1 (Mcl1) in the sustained survival of NK cells in vivo. Mcl1 is highly expressed in NK cells and regulated by IL-15 in a dose-dependent manner via STAT5 phosphorylation and subsequent binding to the 3'-UTR of Mcl1. Specific deletion of Mcl1 in NK cells results in the absolute loss of NK cells from all tissues owing to a failure to antagonize pro-apoptotic proteins in the outer mitochondrial membrane. This NK lymphopenia results in mice succumbing to multiorgan melanoma metastases, being permissive to allogeneic transplantation and being resistant to toxic shock following polymicrobial sepsis challenge. These results clearly demonstrate a non-redundant pathway linking IL-15 to Mcl1 in the maintenance of NK cells and innate immune responses in vivo

    Stress and worry in the 2020 coronavirus pandemic: Relationships to trust and compliance with preventive measures across 48 countries in the COVIDiSTRESS global survey

    Get PDF
    The COVIDiSTRESS global survey collects data on early human responses to the 2020 COVID-19 pandemic from 173 429 respondents in 48 countries. The open science study was co-designed by an international consortium of researchers to investigate how psychological responses differ across countries and cultures, and how this has impacted behaviour, coping and trust in government efforts to slow the spread of the virus. Starting in March 2020, COVIDiSTRESS leveraged the convenience of unpaid online recruitment to generate public data. The objective of the present analysis is to understand relationships between psychological responses in the early months of global coronavirus restrictions and help understand how different government measures succeed or fail in changing public behaviour. There were variations between and within countries. Although Western Europeans registered as more concerned over COVID-19, more stressed, and having slightly more trust in the governments' efforts, there was no clear geographical pattern in compliance with behavioural measures. Detailed plots illustrating between-countries differences are provided. Using both traditional and Bayesian analyses, we found that individuals who worried about getting sick worked harder to protect themselves and others. However, concern about the coronavirus itself did not account for all of the variances in experienced stress during the early months of COVID-19 restrictions. More alarmingly, such stress was associated with less compliance. Further, those most concerned over the coronavirus trusted in government measures primarily where policies were strict. While concern over a disease is a source of mental distress, other factors including strictness of protective measures, social support and personal lockdown conditions must also be taken into consideration to fully appreciate the psychological impact of COVID-19 and to understand why some people fail to follow behavioural guidelines intended to protect themselves and others from infection. The Stage 1 manuscript associated with this submission received in-principle acceptance (IPA) on 18 May 2020. Following IPA, the accepted Stage 1 version of the manuscript was preregistered on the Open Science Framework at https://osf.io/g2t3b. This preregistration was performed prior to data analysis

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore