283 research outputs found

    Multifragmentation of charge asymmetric nuclear systems

    Full text link
    The multifragmentation of excited spherical nuclear sources with various N/Z ratios and fixed mass number is studied within dynamical and statistical models. The dynamical model treats the multifragmentation process as a final stage of the growth of density fluctuations in unstable expanding nuclear matter. The statistical model makes a choice of the final multifragment configuration according to its statistical weight at a global thermal equilibrium. Similarities and differences in the predictions of the two models on the isotopic composition of the produced fragments are presented and the most sensitive observable characteristics are discussed.Comment: 15 pages, 8 figure

    Metabolic oscillations on the circadian time scale in <i>Drosophila</i> cells lacking clock genes.

    Get PDF
    Circadian rhythms are cell-autonomous biological oscillations with a period of about 24 h. Current models propose that transcriptional feedback loops are the primary mechanism for the generation of circadian oscillations. Within this framework, &lt;i&gt;Drosophila&lt;/i&gt; S2 cells are regarded as "non-rhythmic" cells, as they do not express several canonical circadian components. Using an unbiased multi-omics approach, we made the surprising discovery that &lt;i&gt;Drosophila&lt;/i&gt; S2 cells do in fact display widespread daily rhythms. Transcriptomics and proteomics analyses revealed that hundreds of genes and their products, and in particular metabolic enzymes, are rhythmically expressed in a 24-h cycle. Metabolomics analyses extended these findings and demonstrate that central carbon metabolism and amino acid metabolism are core metabolic pathways driven by protein rhythms. We thus demonstrate that 24-h metabolic oscillations, coupled to gene and protein cycles, take place in nucleated cells without the contribution of any known circadian regulators. These results therefore suggest a reconsideration of existing models of the clockwork in &lt;i&gt;Drosophila&lt;/i&gt; and other eukaryotic systems

    Boundary Liouville theory at c=1

    Full text link
    The c=1 Liouville theory has received some attention recently as the Euclidean version of an exact rolling tachyon background. In an earlier paper it was shown that the bulk theory can be identified with the interacting c=1 limit of unitary minimal models. Here we extend the analysis of the c=1-limit to the boundary problem. Most importantly, we show that the FZZT branes of Liouville theory give rise to a new 1-parameter family of boundary theories at c=1. These models share many features with the boundary Sine-Gordon theory, in particular they possess an open string spectrum with band-gaps of finite width. We propose explicit formulas for the boundary 2-point function and for the bulk-boundary operator product expansion in the c=1 boundary Liouville model. As a by-product of our analysis we also provide a nice geometric interpretation for ZZ branes and their relation with FZZT branes in the c=1 theory.Comment: 37 pages, 1 figure. Minor error corrected, slight change in result (1.6

    Structural Ordering and Antisite Defect Formation in Double Perovskites

    Full text link
    We formulate an effective model for B-B' site ordering in double perovskite materials A_2BB'O_6. Even within the simple framework of lattice-gas type models, we are able to address several experimentally observed issues including nonmonotonic dependence of the degree of order on annealing temperature, and the rapid decrease of order upon overdoping with either B or B' species. We also study ordering in the `ternary' compounds A_2BB'_{1-y}B''_yO_6 Although our emphasis is on the double perovskites, our results are easily generalizable to a wide variety of binary and ternary alloys.Comment: 9 pages pdflatex, 21 embedded png fig

    Sulfonated Styrene-(ethylene-co-butylene)-styrene/Montmorillonite Clay Nanocomposites: Synthesis, Morphology, and Properties

    Get PDF
    Sulfonated styrene-(ethylene-butylene)-styrene triblock copolymer (SSEBS) was synthesized by reaction of acetyl sulfate with SEBS. SSESB-clay nanocomposites were then prepared from hydrophilic Na-montmorillonite (MT) and organically (quaternary amine) modified hydrophobic nanoclay (OMT) at very low loading. SEBS did not show improvement in properties with MT-based nanocomposites. On sulfonation (3 and 6 weight%) of SEBS, hydrophilic MT clay-based nanocomposites exhibited better mechanical, dynamic mechanical, and thermal properties, and also controlled water–methanol mixture uptake and permeation and AC resistance. Microstructure determined by X-ray diffraction, atomic force microscopy, and transmission electron microscopy due to better dispersion of MT nanoclay particles and interaction of MT with SSEBS matrix was responsible for this effect. The resulting nanocomposites have potential as proton transfer membranes for Fuel Cell applications

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C-Mn high-strength steels

    Full text link
    The effect of finish rolling temperature (FRT) on the austenite- () to-bainite () phase transformation is quantitatively investigated in high-strength C-Mn steels. In particular, the present study aims to clarify the respective contributions of the conditioning during the hot rolling and the variant selection (VS) during the phase transformation to the inherited texture. To this end, an alternative crystallographic reconstruction procedure, which can be directly applied to experimental electron backscatter diffraction (EBSD) mappings, is developed by combining the best features of the existing models: the orientation relationship (OR) refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. The applicability of this method is demonstrated on both quenching and partitioning (Q&P) and as-quenched lath-martensite steels. The results obtained on the C-Mn steels confirm that the sample finish rolled at the lowest temperature (829{\deg}C) exhibits the sharpest transformation texture. It is shown that this sharp texture is exclusively due to a strong VS from parent brass {110}, S {213} and Goss {110} grains, whereas the VS from the copper {112} grains is insensitive to the FRT. In addition, a statistical VS analysis proves that the habit planes of the selected variants do not systematically correspond to the predicted active slip planes using the Taylor model. In contrast, a correlation between the Bain group to which the selected variants belong and the FRT is clearly revealed, regardless of the parent orientation. These results are discussed in terms of polygranular accommodation mechanisms, especially in view of the observed development in the hot-rolled samples of high-angle grain boundaries with misorientation axes between and

    Identifying challenges and opportunities for improved nutrient management through U.S.D.A's Dairy Agroecosystem Working Group

    Get PDF
    Nutrient management is a priority of U.S. dairy farms, although specific concerns vary across regions and management systems. To elucidate challenges and opportunities to improving nutrient use efficiencies, the USDA’s Dairy Agroecosystems Working Group investigated 10 case studies of confinement (including open lots and free stall housing) and grazing operations in the seven major U.S. dairy producing states. Simulation modeling was carried out using the Integrated Farm Systems Model over 25 years of historic weather data. Dairies with a preference for importing feed and exporting manure, common for simulated dry lot dairies of the arid west, had lower nutrient use efficiencies at the farm gate than freestall and tie-stall dairies in humid climates. Phosphorus (P) use efficiencies ranged from 33 to 82% of imported P, while N use efficiencies were 25 to 50% of imported N. When viewed from a P budgeting perspective, environmental losses of P were generally negligible, especially from dry lot dairies. Opportunities for greater P use efficiency reside primarily in increasing on-farm feed production and reducing excess P in diets. In contrast with P, environmental losses of nitrogen (N) were 50 to 75% of annual farm N inputs. For dry lot dairies, the greatest potential for N conservation is associated with ammonia (NH3) control from housing, whereas for freestall and tie-stall operations, N conservation opportunities vary with soil and manure management system. Given that fertilizer expenses are equivalent to 2 to 6% of annual farm profits, cost incentives do exist to improve nutrient use efficiencies. However, augmenting on-farm feed production represents an even greater opportunity, especially on large operations with high animal unit densities
    corecore