176 research outputs found

    Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula

    Get PDF
    © 2015 Wiley Periodicals, Inc. Background: During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. Results: Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. Conclusions: We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.Spanish MICINN and the UAM, and funded by project CGL2011-29916 (MICINN)Peer Reviewe

    Longitudinal Profile Monitor Using Smith-Purcell Radiation: Recent Results from the E-203 Collaboration

    No full text
    TUPC38 - Work supported by seed funding from the John Fell Fund, University of Oxford, Université Paris-Sud, program "Attractivité" and by the ANR under contract ANR-12-JS05-0003-01International audienceWe report on recent measurements made at FACET by the E-203 collaboration to test a longitudinal bunch profile monitor based on Coherent Smith-Purcell radiation. The capacity of this monitor to resolve sub-picosecond bunches will be shown as well as a comparison of profile reconstructed for different beam compression settings. We will also present recent electromagnetic simulations of the interactions between the beam and the grating as well as the expected resolution of such monitor. Comparison between Coherent Smith-Purcell radiation measurement and those made with other techniques will also be discussed. Finally future upgrades of the experiment and steps toward the construction of a single shot longitudinal profile monitor will be presented

    Avoiding Coral Reef Functional Collapse Requires Local and Global Action

    Get PDF
    oral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification [1]. While the abundance of coral has declined in recent decades [2, 3], the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation [4]. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration [5, 6]. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services

    Medial-lateral centre of mass displacement and base of support are equally good predictors of metabolic cost in amputee walking

    Get PDF
    Amputees are known to walk with greater metabolic cost than able-bodied individuals and establishing predictors of metabolic cost from kinematic measures, such as centre of mass (CoM) motion, during walking are important from a rehabilitative perspective, as they can provide quantifiable measures to target during gait rehabilitation in amputees. While it is known that vertical CoM motion poorly predicts metabolic cost, CoM motion in the medial-lateral (ML) and anterior-posterior directions have not been investigated in the context of gait efficiency in the amputee population. Therefore, the aims of this study were to investigate the relationship between CoM motion in all three directions of motion, base of support and walking speed, and the metabolic cost of walking in both able-bodied individuals and different levels of lower limb amputee. 37 individuals were recruited to form groups of controls, unilateral above- and below-knee, and bilateral above-knee amputees respectively. Full-body optical motion and oxygen consumption data were collected during walking at a self-selected speed. CoM position was taken as the mass-weighted average of all body segments and compared to each individual’s net non-dimensional metabolic cost. Base of support and ML CoM displacement were the strongest correlates to metabolic cost and the positive correlations suggest increased ML CoM displacement or Base of support will reduce walking efficiency. Rehabilitation protocols which indirectly reduce these indicators, rather than vertical CoM displacement will likely show improvements in amputee walking efficiency

    Neuroimaging and Responsibility Assessments

    Get PDF
    Could neuroimaging evidence help us to assess the degree of a person’s responsibility for a crime which we know that they committed? This essay defends an affirmative answer to this question. A range of standard objections to this high-tech approach to assessing people’s responsibility is considered and then set aside, but I also bring to light and then reject a novel objection—an objection which is only encountered when functional (rather than structural) neuroimaging is used to assess people’s responsibility

    Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum , and Thalassiosira gravida

    Full text link
    Three marine diatoms, Skeletonema costatum, Chaetoceros debilis , and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a , N:chlorophyll a , P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a , and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH 4 -starved cells contained more chlorophyll a , carbon, nitrogen, silica, and phosphorus per cell volume than NH 4 -limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a , P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a , N:chlorophyll a , C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH 4 -limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46631/1/227_2004_Article_BF00392568.pd

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore