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Summary

Coral reefs face multiple anthropogenic threats, from pollu-

tion and overfishing to the dual effects of greenhouse gas
emissions: rising sea temperature and ocean acidification

[1]. While the abundance of coral has declined in recent
decades [2, 3], the implications for humanity are difficult to

quantify because they depend on ecosystem function rather
than the corals themselves. Most reef functions and

ecosystem services are founded on the ability of reefs to
maintain their three-dimensional structure through net

carbonate accumulation [4]. Coral growth only constitutes
part of a reef’s carbonate budget; bioerosion processes are

influential in determining the balance between net structural
growth anddisintegration [5, 6]. Here,wecombine ecological

models with carbonate budgets and drive the dynamics of
Caribbean reefs with the latest generation of climatemodels.

Budget reconstructions using documented ecological
perturbations drive shallow (6–10 m) Caribbean forereefs

toward an increasingly fragile carbonate balance. We then
projected carbonate budgets toward 2080 and contrasted

the benefits of local conservation and global action on
climate change. Local management of fisheries (specifically,

no-take marine reserves) and the watershed can delay reef
loss by at least a decade under ‘‘business-as-usual’’ rises

in greenhouse gas emissions. However, local action must
be combined with a low-carbon economy to prevent degra-

dation of reef structures and associated ecosystemservices.
*Correspondence: p.j.mumby@uq.edu.au
Results and Discussion

Coral reefs provide a wealth of ecosystem services, including
the provision of coastal protection, commercial fishing,
tourism, animal protein, sand production, and the highest
biodiversity in the oceans [7]. Many of these services are ulti-
mately founded on the healthy functioning of living corals
and the habitat structures they create. Through their growth,
corals generate skeletons of calcium carbonate (limestone)
that provide a natural breakwater and the complex three-
dimensional habitat needed to sustain biodiversity. Natural,
ongoing erosion of this carbonate substrate generates sand
accumulation on beaches and islands. The long-term mainte-
nance of reef structures requires that the production of car-
bonate exceeds its rate of erosion; i.e., that the carbonate
budget is positive [5]. However, carbonate budgets are acutely
threatened by the combined effects of climate change and
local anthropogenic stressors [8], and a recent study
concluded that 21% of Caribbean reefs surveyed were experi-
encing net decline [9]. Rates of coral production may decline
because of a suite of detrimental processes, including coral
bleaching [10], ocean acidification [1], diseases [11, 12], and
a reduction in reef resilience [13]. Further, rates of erosion
are projected to increase as ocean acidification slows coral
growth, weakens reefs [14], and enhances sponge driven
biochemical dissolution of the carbonate substrate [15].
Here, we couple models of climate change, ecosystem dy-

namics, and carbonate processes to ask whether reefs could
shift to net erosional states and consider how threat mitigation
at global and local scales might avoid this undesirable trajec-
tory.We focus on Caribbean reefs for four reasons. First, much
of the pioneering research on carbonate budgets was carried
out in this region [6, 16, 17], thereby providing a benchmark
to develop models and gauge changes in budgets over recent
decades. Second, the low diversity of this region simplifies the
challenge of modeling reef dynamics and carbonate budgets
[13]. Third, Caribbean reefs have experienced profound levels
of disturbance and degradation [2], and fourthly, these anthro-
pogenic impacts have served as a bellwether for declines seen
subsequently in other regions [18], meaning that there is an
urgent need to understand future trajectories of ecosystem
functioning.
Evidence suggests that Caribbean reefs have been losing

architectural structure since the late 1970s (Figure 1A) [19]
and that contemporary carbonate production rates on many
reefs are now lower than those measured in core records
over the last w8,000 years [9]. These changes have been
caused by widespread coral mortality, and while the drivers
of mortality differ among sites, coral disease, hurricanes,
overfishing, urchin die-off, and episodic bleaching events
have all contributed. To explore the implications of these
well-documented ecological events on the dynamics of reef
structures, we developed several characteristic scenarios
(Figures 1A and 1C) ranging from ‘‘healthy’’ intact ecosystems
documented in the 1960s through to the present day (model
specification provided in Supplemental Experimental Proce-
dures available online). Key ecological events are (1) depletion
of reef fish by fishing, (2) loss of large branching Acropora
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Figure 1. Changes in Caribbean Framework Bioerosion versus Carbonate Production over the Past Half Century

(A) Photographs of Caribbean reefs typifying states of degradation used to illustrate historical scenarios (1 to 5). From left to right: scenario 1, a relatively

healthy reef (considered typical of the 1960s to early 1970s) with high abundance and diversity of corals and fish; scenario 2 (1970s), in some cases overf-

ished; scenario 3 (1970s to early 1980s), reefs have lost most branching Acroporids and are often heavily fished with reduced coral cover; scenario 4,

Diadema-depauperate reef with low coral cover and diversity from the mid-1980s to 1990s; scenario 5 (2000s), a degraded reef with low coral cover.

(B) Model reconstructions of carbonate budgets with mean net accretion values (kg CaCO3m
22 year216 SD). Parameter values were allowed to vary based

on empirical data. Arrow shows chronological trajectory of net reef budget. Other published reef carbonate budgets from the Caribbean region are plotted

for comparison.

(C) The table lists the plotted scenarios and their descriptors: –, absent; +, present; ++, overabundance; *Ac, Acropora; Mo, Montastraea.

See also Figures S1, S4, and S9 and Tables S1 and S2.
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palmata and A. cervicornis, primarily because of disease,
(3) hyperabundance of the urchin Diadema antillarum when
its predators were overfished, (4) loss of Diadema because
of disease, (5) poor watershed management leading to eutro-
phication, and (6) ongoing climate change from the 1960s
onward. We also model the recuperation of some ecological
processes through improved reef management or natural
recovery [20].

Historical Changes in Caribbean Reef Carbonate Budgets

Although reef ecosystems were not pristine in the 1960s, our
reconstruction of the environment and ecological structure
yielded high mean rates of net carbonate production at 5.0
(63.2) kg CaCO3 m22 y21, and a maximum of 17.7 kg CaCO3
m22 y21 (Figure 1B, scenario 1). By convention, the term G is
used for net carbonate production with units kg CaCO3 m22

y21 [21]. Moving forward to the 1970s, carbonate budgets
show little difference when only greenhouse gas-driven
changes in temperature and ocean acidification (OA) were
added (Figure 1B, scenario 2a). These hind-casted budgets
of net reef carbonate production are almost identical to those
rates measured in several classic studies from the 1970s
(Supplemental Experimental Procedures), which found that
Caribbean reefs existed in positive budgetary states, primarily
because of high rates of production by the species A. palmata
and A. cervicornis. Measured rates ranged from 4.5 G [6], to
2.1 G [22] in Barbados and 1.1 G in Jamaica [17]. Similarly, a
synthesis of regional forereef carbonate production measures
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Figure 2. Sensitivity of Model Caribbean Reefs to Simulated Disturbance Events

Absolute change in carbonate budget output (x axis) brought about by 10% change in selected variable (y axis) for a relatively healthy reef (scenario 1) with

55% coral cover, healthy abundances of urchins and fish, and a reference budget of 5.0 kg CaCO3 m
22 year21 (A) and a present-day degraded Caribbean

reef (scenario 5)with 10%coral cover, lowdiversity, few fish, and no urchins accreting at 2.0 kgCaCO3m
22 year21 (B). Note that the x axes differ between the
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from this period suggested that gross carbonate production
rates in the region ranged from w10–17 G [23].

Many reefs had already experienced heavy fisheries exploi-
tation by the 1960s and 1970s, resulting in depauperate fish
communities and rapidly expanding populations of urchins,
which were freed from their predators [24]. Under these
circumstances, we found that the hyperabundance of bio-
eroding Diadema shifted reefs toward a net loss of reef struc-
ture (21.5 G; Figure 1B, scenario 2b). However, we add a
cautionary note about this result for those systems that had a
high abundance of crustose coralline algae (CCA). A Jamaican
study site that exhibited a hyperabundance of Diadema
(15 m22) in 1978 was also dominated by CCA (55%) and 30%
live coral [25]. For CCAs to be surviving under this grazing
intensity, the reef could not have been in a net erosional state
as would have been predicted by several carbonate budgets
[26], including our own. Models usually calculate the erosive
capacity of herbivores separately and then subtract this from
observed rates of carbonate production for CCAs (and other
carbonate producers). However, most measurements of CCA
carbonate production implicitly include ambient erosion by
fishand invertebrates, yet this is rarelyquantifiedor considered
further. Thus, models run the risk of overestimating the erosion
of CCAs because observed CCA production is often net CCA
production after herbivory. Empirical studies are needed to
determine theaccretionofCCAunder awide rangeof herbivore
assemblages so that double-accounting can be avoided.

In the 1980s, two epizootics shaped the ecology of Carib-
bean reefs dramatically. First, both species of the branching
coral, Acropora, experienced region-wide decline because of
white band disease. Our early 1980s scenarios reflect this
event through dramatic reductions in net carbonate produc-
tion, such that even lightly fished reefs were pushed close to
carbonate equilibrium (Figure 1B, scenario 3a, 20.01 G).
Overfished reefs in the early 1980s show the most negative
budget of 23.5 G, driven by high urchin bioerosion (211.1 G)
and reduced coral productivity (2.6 G). This budget is similar
to that calculated on heavily exploited reefs in the tropical
eastern Pacific (20.6 to 23.6 G) [27]: sites at which extensive
loss of reef structure was documented.
The second major epizootic was the regional mass mortality

of the urchin D. antillarum in 1983–1984 [28]. The loss of this
important herbivore generated a well-documented increase
in algal abundance [24, 29], but the cessation of Diadema
bioerosion also returned the reef to net carbonate accretion,
albeit at lower levels than predicted for the 1960s (Figure 1).
Positive budgets were possible, in part, because coral cover
remainedmodest (Figure 1B, scenarios 4a–4d). Although inter-
nal bioerosion doubled under polluted scenarios (Figure 1B,
scenarios 4c and 4d), the increase was insufficient to shift
the system into net erosion (net budget +0.30 G). Again,
modeled values of net carbonate production (1.9 to 2.7 G)
were comparable to empirical estimates at the time, such as
that from Saint Croix (0.9 G) [16].
Net carbonate budgets in archetypal reefs of the 1990s are

positive, but the decline in coral after bleaching events in
1998 and 2005 [30–32] led to increasingly marginal carbonate
production in the 2000s (Figure 1B). However, although net
production remained positive, it is important to recognize
that absolute levels of carbonate production and bioerosion
have declined, principally because of reduced coral produc-
tion and a loss of urchin and sometimes parrotfish bioerosion.
The ecosystem therefore has lower rates of carbonate pro-
cesses (Figure 2). In accordance with previous decades,
modeled budget estimates are comparable to recent studies
from Jamaica [33] and exposed sites of Bonaire [5].
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Figure 3. Future Carbonate Budgets of a Caribbean Forereef under Climate Change and Ocean Acidification with and without Local Conservation

of Herbivores

The top panel represents scenarios under realistic greenhouse gas (GHG) emissions (RCP 8.5), whereas the bottom panel represents aggressive reduction

of GHGs (RCP 2.6). Initial conditions of reefs are either degraded with 10% coral cover (A, B, E, and F) or healthier with 20% coral (C, D, G, and H). Herbiv-

orous fish are either overfished or protected (denoted with parrotfish symbols). Each plot displays 20 simulations, with outputs generated at 6 month

intervals and run for years 2010–2080. Vertical blue bars indicate point at which the projected budget becomes negative (<–0.1 kg for >5 years). See

also Figures S3 and S6–S8.
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Key Drivers of Carbonate Budgets

To identify how the key drivers of carbonate dynamics have
changed over time, we ran model sensitivity analyses for the
‘‘healthy’’ reefs of scenario 1 and ‘‘unhealthy’’ reefs of scenario
5 (Figure 2). Each sensitivity analysis calculated the difference
in budget associatedwith a610%change in themean value of
each of the 115 input variables. Healthy, coral-dominated reefs
were most sensitive to changes in coral production brought
about by variability in the physical drivers of calcification
(sea surface temperature and carbonate saturation state, Fig-
ure S3), as well as intrinsic skeletal density and linear exten-
sion rate (Figure 2A). As coral cover declined (Figure 2B), the
system became less sensitive to drivers of calcification and
responded to drivers of bioerosion such as nitrate level (a
proxy for eutrophication), sponge bioerosion rate, and the
size and abundance of urchins. Indeed, nitrate level was
ranked the most important factor for degraded reef budgets
such that a 10% increase led to a 33%decline in net carbonate
production. Nutrification can benefit the growth of microendo-
liths [34] and filter-feedingmacrobioeroders, such asmolluscs
and sponges [35, 36], while also reducing coral calcification
and extension rates [37, 38].

Ensuring Reef Function in Future: Local Management

versus Global Action on Greenhouse Gas Emissions
The maintenance of a positive carbonate budget is a funda-
mental prerequisite to sustain many reef functions, such as
the provision of habitat for biodiversity and fishery resources.
To assess the action needed to sustain net carbonate produc-
tion, we separated interventions to reduce local stressors from
global efforts to mitigate greenhouse gas emissions. Our first
analysis considered the local action of protecting grazing par-
rotfishes, which have been found to reduce levels of seaweed
on forereefs [39] and assist coral recovery [40]. We also con-
trasted a ‘‘business-as-usual’’ scenario of greenhouse gas
emissions (based on HadGEM-2ES Earth System model
scenario Representative Concentration Pathway, RCP 8.5
[41]) with a progressive move toward a low carbon economy
(RCP 2.6), a scenario based low emissions and radiative forc-
ing, that aims to keep global mean temperature increases
below 2�C. In this first analysis, we assumed that the cata-
strophic losses of Acropora and the urchin Diadema persist
and also compare the outlook for reefs with a ‘‘relatively
healthy’’ 20% coral cover and a more degraded 10% cover,
based on a synthesis of Caribbean coral cover values [42].
While scope exists for coral adaptation to rising stress [43],
the extent of adaptation is uncertain [44], and we make the
conservative assumption of no adaptation.
Only one set of interventionsmaintained substantial positive

carbonate budgets until the end of simulations in 2080: local
maintenance of grazing by protecting parrotfishes and
concerted global action to reduce greenhouse gas emissions
(Figure 3H). Moreover, clear positive budgets required reefs
to start with relatively healthy coral as those starting with
only 10% coral remained close to equilibrium (Figure 3F). If
greenhouse gas emissions follow the business-as-usual trend
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(RCP 8.5), then reefs eventually exhibit strong net erosion irre-
spective of local conservation measures (Figures 3A–3D).
However, conservation of parrotfish managed to delay the
onset of net erosion by approximately a decade, providing
that the reef started with higher coral cover (Figures 3C and
3D). A nonlinear benefit of parrotfish protection with initial
coral cover (Figures 3G and 3H) occurred because of
ecosystem hysteresis [45]. At 20% initial cover, grazing
intensity was high and coral recruitment was successful. How-
ever, 10% coral led to reduced grazing intensity because
herbivores had a larger area in which to feed. Reduced grazing
intensity allowed macroalgae to increase and reduce coral
recruitment to the extent that coral populations were no longer
sustainable. Under RCP 8.5, however, even high initial coral
cover did not confer sufficient resilience, and the system
was eventually overwhelmed by frequent coral bleaching.

The outlook for carbonate budgets improves when green-
house gases are mitigated aggressively. Although only one
scenario led to clear reef growth, the alternatives hovered
near carbonate equilibrium under RCP 2.6 (Figures 3E–3G).

The impact of parrotfish conservation on more degraded
reefs helps resolve the putative ‘‘negative’’ impact of parrotfish
as a source of bioerosion from their positive impact in reducing
the algal competitors of corals [46]. After parrotfish stocks are
heavily fished, rates of bioerosion are lower and net carbonate
production is initially greater (Figure 1B, scenarios 5a and 5b,
and Figures 3E and 3F). However, because coral cover
declines rapidly in the functional absence of parrotfish
(Supplemental Experimental Procedures), the long-term
consequence of fishing is worse for the reef because a decline
in coral skeletal production leads to a lower overall carbonate
budget (Figures 3E and 3F).

The benefits of local action are not confined to managing
parrotfish. Poor management of agricultural runoff and waste
water can increase nutrient levels and influence macroalgal
growth [47], coral calcification [48, 49], and rates of bioerosion
[50–52]. Indeed, eutrophication is likely to be highly influential
on the balance between carbonate production and erosion
[35, 53]. We found qualitatively similar results simulating the
effects of eutrophication in which an increase in nitrate con-
centration of 0.22 mmol liter21 prevented long-term net carbon-
ate production even under RCP 2.6 (Figure 4C).

It has been argued that the lack of resilience of Caribbean
reefs is strongly associated with the disease-induced absence
of the fast-growing coral, A. cervicornis, and/or the urchin,
Diadema [42]. We simulated their recovery under RCP 8.5
but found that neither allowed sustained positive reef growth,
although reefs fared better with A. cervicornis (Figures 4A and
4B). Whether these key species can make a full recovery is
highly uncertain. Ambiguity also surrounds the effects of
ocean acidification on coral net calcification and growth
[56, 57]. Most simulations assumed linear reductions in net
calcification with falling aragonite saturation state. However,
much less extreme reductions in calcification have also been
reported [58]. We repeated the business-as-usual greenhouse
gas emissions but substituted a more benign impact of ocean
acidification on net calcification (Figure 4D). Although carbon-
ate budgets improved, the overall result remained unchanged;
even with parrotfish protection, no eutrophication, and
an initial cover of 20% coral, carbonate budgets eventually
became strongly negative (see also Figure S2). This is likely
because the effects of ocean acidification on corals appeared
to be considerably less influential in driving the negative
budget projections than rising SSTs, agreeing with other
recent work [59].
The assessment of coral reefs for management has largely

focused on ecological variables such as coral cover, coral
size distribution, and fish abundance [5]. Yet the ultimate goals
of most management are founded on the functions delivered
by reefs as three-dimensional geological structures. We pro-
pose that carbonate budgets could be used to set target levels
of coral, water quality, and herbivory that enable reefs to be
maintained in positive accretion and therefore better able to
deliver the biodiversity and livelihood goals of reef manage-
ment. Although better local management should always favor
reef function, there was no a priori reason to expect that the
combination of local and global interventions would have the
potential to sustain net carbonate accretion in the 21st century.
Yet our results suggest that local interventions are far from
futile [60], and indeed are essential for assuring sustained
ecosystem functioning. Unfortunately, only three countries in
the region have taken steps to protect herbivorous fish
throughout their coastal zone (Belize, Bermuda, and Bonaire),
so protection is usually confined to small no-take marine
reserves. We also provide unambiguous evidence that local
efforts must be accompanied by rigorous global action to
mitigate climate change.
Experimental Procedures

A simulation model was created in Matlab (MATLAB 7.1, The MathWorks,

Natick, MA, 2000). Model parameters were drawn from published literature



Functional Collapse of Coral Reefs
917
on Caribbean reefs, some unpublished data, and climate data from IPCC

AR5 earth system models (see Figure S3). One hundred fifteen parameters

were defined in total, and each was assigned a mean value and a standard

deviation (Table S1). All model parameters and scenarios are provided in

detail in the Supplemental Experimental Procedures.

Supplemental Information

Supplemental Information includes nine figures, four tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.04.020.
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