127 research outputs found
Effect of band structure on ferromagnetism*
Journal ArticleWe extend Nagaoka's study of the ferromagnetism of nearly half-filled bands in the infinite-repulsion limit of the Hubbard model by including next-nearest-neighbor tight-binding overlap matrix elements K2. Particles can now get past one another, even in one dimension. We find corroboration of Nagaoka's results, viz., either possibility or impossibility of ferromagnetism depending on the relative sign and magnitude of K2
Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks
Master of ScienceDepartment of Biological and Agricultural EngineeringDonghai WangAcid catalysts have been successfully used for pretreatment of cellulosic biomass to improve sugar recovery and its later conversion to ethanol. However, use of acid requires a considerable equipment investment as well as disposal of residues. Acid-functionalized nanoparticles were synthesized for pretreatment and hydrolysis of lignocellulosic biomass to increase conversion efficiency at mild conditions. Advantages of using acid-functionalized metal nanoparticles are not only the acidic properties to catalyze hydrolysis and being small enough to penetrate into the lignocellulosic structure, but also being easily separable from hydrolysis residues by using a strong magnetic field.
Cobalt spinel ferrite magnetic nanoparticles were synthesized using a microemulsion method and then covered with a layer of silica to protect them from oxidation. The silanol groups of the silica serve as the support of the sulfonic acid groups that were later attached to the surface of the nanoparticles. TEM images and FTIR methods were used to characterize the properties of acid-functionalized nanoparticles in terms of nanoparticle size, presence of sulfonic acid functional groups, and pH as an indicator of acid sites present. Citric acid-functionalized magnetite nanoparticles were also synthesized and evaluated.
Wheat straw and wood fiber samples were treated with the acid supported nanoparticles at 80°C for 24 h to hydrolyze their hemicellulose fraction to sugars. Further hydrolysis of the liquid fraction was carried out to account for the amount of total solubilized sugars. HPLC was used to determine the total amount of sugars obtained in the aqueous solution. The perfluroalkyl-sulfonic acid functional groups from the magnetic nanoparticles yielded significantly higher amounts of oligosaccharides from wood and wheat straw samples than the alkyl-sulfonic acid functional groups did. More stable fluorosulfonic acid functionalized nanoparticles can potentially work as an effective heterogeneous catalyst for pretreatment of lignocellulosic materials
The 18 May 2024 Iberian superbolide from a sunskirting orbit: USG space sensors and ground-based independent observations
On 18 May 2024, a superbolide traversed the western part of the Iberian Peninsula, culminating its flight over the Atlantic Ocean and generating significant media attention. This event was caused by a weak carbonaceous meteoroid of 1 m, entering the atmosphere at 40.4 km/s with an average slope of 8.5o. The luminous phase started at 133 km and ended at an altitude of 54 km. The meteoroid’s heliocentric orbit had an inclination of 16.4o, a high eccentricity of 0.952, a semimajor axis of 2.4 au, and a short perihelion distance of 0.12 au. The superbolide was recorded by multiple ground-based stations of the Spanish Fireball and Meteorite Network and the European Space Agency, as well as by the U.S. Government sensors from space. Due to the absence of observable deceleration, we successfully reconciled satellite radiometric data with a purely dynamic atmospheric flight model, constraining the meteoroid’s mass and coherently fitting its velocity profile. Our analysis shows a good agreement with the radiant and velocity data reported by the Center for Near-Earth Object Studies, with a deviation of 0.56o and 0.1 km/s, respectively. The presence of detached fragments in the lower part of the luminous trajectory suggests that the meteoroid was a polymict carbonaceous chondrite, containing higher-strength macroscopic particles in its interior due to collisional gardening, or a thermally processed C-type asteroid. The orbital elements indicate that the most likely source is the Jupiter-Family Comet region, aligning with the Solar and Heliospheric Observatory comet family, as its sunskirting orbit is decoupled from Jupiter. This event provides important information to characterize the disruption mechanism of near-Sun objects
Applicability of the Cumberland Ankle Instability Tool in Elite Volleyball Athletes: A Cross-Sectional Observational Study
Background: The ease of administration of the Cumberland Ankle Instability Tool (CAIT) could represent a methodology for periodically evaluating athletes, preventing ankle instability injuries. This study aimed to achieve three objectives: (a) to evaluate the applicability of the CAIT scale in volleyball; (b) to explore whether ankle instability presents a greater risk in lower-level volleyball categories and whether elite athletes demonstrate an ability to mitigate this risk; and (c) to identify potential predictors of ankle instability. Methods: Eighty female volleyball players participated in this cross-sectional observational study. The CAIT was administered to evaluate the athletes belonging to some teams in Series A, B, and C. Results: The Spearman's ranks correlation coefficient showed significant correlations between CAIT items. Additionally, the Cronbach's alpha showed a high internal consistency. Our results showed a significant difference between athletes who reported pain and those who did not (p < 0.001). The multiple linear regression model analysis showed that pain was a predictor of ankle instability (p < 0.001). Conclusions: Our findings suggest that the CAIT can be used to evaluate ankle stability in volleyball players. This scale could represent a valuable tool for implementing specific intervention programs to prevent ankle injuries in athletes
Creative and Stylistic Devices Employed by Children During a Storybook Narrative Task: A Cross-Cultural Study
Purpose: The purpose of this study was to analyze the effects of culture on the creative and stylistic features children employ when producing narratives based on wordless picture books.
Method: Participants included 60 first- and second-grade African American, Latino American, and Caucasian children. A subset of narratives based on wordless picture books collected as part of a larger study was coded and analyzed for the following creative and stylistic conventions: organizational style (topic centered, linear, cyclical), dialogue (direct, indirect), reference to character relationships (nature, naming, conduct), embellishment (fantasy, suspense, conflict), and paralinguistic devices (expressive sounds, exclamatory utterances).
Results: Many similarities and differences between ethnic groups were found. No significant differences were found between ethnic groups in organizational style or use of paralinguistic devices. African American children included more fantasy in their stories, Latino children named their characters more often, and Caucasian children made more references to the nature of character relationships.
Conclusion: Even within the context of a highly structured narrative task based on wordless picture books, culture influences children’s production of narratives. Enhanced understanding of narrative structure, creativity, and style is necessary to provide ecologically valid narrative assessment and intervention for children from diverse cultural backgrounds
The development of prosocial behavior from late childhood to adolescence: a longitudinal and multicultural study
Introduction: Prosocial behavior (i.e., voluntary actions aimed at benefiting others, such as helping, comforting, and sharing) has proven beneficial for individuals' adjustment during the transition to adolescence. However, less is known about the role of the broader sociocultural context in shaping prosocial development across different cultures. Thus, the present study explored the longitudinal trajectory of prosocial behavior in the transition to adolescence (from ages 9 to 16) by examining the role of the Human Development Index (HDI) in relation to prosocial development.
Methods: A sample of 915 children (Time 1: 50.5% males; Mage = 9.24, SD = 0.69) across six countries (Colombia, Jordan, Italy, the Philippines, Thailand, and the United States) participated in the study. Over four time points covering 7 years, prosocial behavior was assessed using a self-report measure.
Results: A second-order Latent Growth Curve Model, controlling for child gender and family SES, showed that prosocial behavior remained stable in contexts with high HDI, whereas increases in prosocial behavior were evidenced as children moved into adolescence in contexts with low HDI. Moreover, cultural differences in the mean level of prosocial behavior were shown during late childhood and the earliest phase of adolescence, whereas the national development of a given context did not account for differences in prosocial behavior during late adolescence.
Discussion: Findings underscore that national life expectancy, education, and wealth play a role in age-related changes in other-oriented behaviors during adolescence. The role of sociocultural factors in shaping trajectories of prosocial behavior across six countries is discussed
OGLE-2017-BLG-1186: first application of asteroseismology and Gaussian processes to microlensing
We present the analysis of the event OGLE-2017-BLG-1186 from the 2017 Spitzer microlensing campaign. This is a remarkable microlensing event because its source is photometrically bright and variable, which makes it possible to perform an asteroseismic analysis using ground-based data. We find that the source star is an oscillating red giant with average timescale of ∼9 days. The asteroseismic analysis also provides us source properties including the source angular size (∼27μas) and distance (∼11.5 kpc), which are essential for inferring the properties of the lens. When fitting the light curve, we test the feasibility of Gaussian Processes (GPs) in handling the correlated noise caused by the variable source. We find that the parameters from the GP model are generally more loosely constrained than those from the traditional χ2 minimization method. We note that this event is the first microlensing system for which asteroseismology and GPs have been used to account for the variable source. With both finite-source effect and microlens parallax measured, we find that the lens is likely a ∼0.045 M⊙ brown dwarf at distance ∼9.0 kpc, or a ∼0.073 M⊙ ultracool dwarf at distance ∼9.8 kpc. Combining the estimated lens properties with a Bayesian analysis using a Galactic model, we find a 35% probability for the lens to be a bulge object and 65% to be a background disk object
Prospects for combined analyses of hadronic emission from -ray sources in the Milky Way with CTA and KM3NeT
The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major
upcoming facilities in the fields of -ray and neutrino astronomy,
respectively. Possible simultaneous production of rays and neutrinos
in astrophysical accelerators of cosmic-ray nuclei motivates a combination of
their data. We assess the potential of a combined analysis of CTA and KM3NeT
data to determine the contribution of hadronic emission processes in known
Galactic -ray emitters, comparing this result to the cases of two
separate analyses. In doing so, we demonstrate the capability of Gammapy, an
open-source software package for the analysis of -ray data, to also
process data from neutrino telescopes. For a selection of prototypical
-ray sources within our Galaxy, we obtain models for primary proton and
electron spectra in the hadronic and leptonic emission scenario, respectively,
by fitting published -ray spectra. Using these models and instrument
response functions for both detectors, we employ the Gammapy package to
generate pseudo data sets, where we assume 200 hours of CTA observations and 10
years of KM3NeT detector operation. We then apply a three-dimensional binned
likelihood analysis to these data sets, separately for each instrument and
jointly for both. We find that the largest benefit of the combined analysis
lies in the possibility of a consistent modelling of the -ray and
neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for
the most favourable source, an average expected 68% credible interval that
constrains the contribution of hadronic processes to the observed -ray
emission to below 15%.Comment: 18 pages, 15 figures. Submitted to journa
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …