197 research outputs found

    Give a little RESPECT: Patient and Public Involvement in Research

    Get PDF
    There are many reasons why patient and public involvement (PPI) is important for health research. This interactive workshop will discuss the value of PPI along with the hurdles and (more importantly) solutions. Examples will be drawn from our experiences of PPI involvement in the RESPECT study, which aims to improve the sexual health of people with serious mental illness

    MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer

    Get PDF
    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment

    Müller glia provide essential tensile strength to the developing retina.

    Get PDF
    This is the final version of the article. It first appeared from the Rockefeller University Press via http://dx.doi.org/10.1083/jcb.201503115To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS.This work was funded by a Herchel Smith Postdoctoral Fellowship to R.B.M., the Wellcome Trust programme in Developmental Biology to O.R. and J.O., NIH grants EY14358 (R.O.W.) and EY01730 (Vision Core), MRC Career Development Award and HFSP Young Investigator Grant to K.F., and a Wellcome Trust Investigator Award to W.A.H

    Picturing the nation : The Celtic periphery as discursive other in the archaeological displays of the museum of Scotland

    Full text link
    Using the archaeological displays at the Museum of Scotland in Edinburgh, this paper examines the exhibition as a site of identity creation through the negotiations between categories of same and Other. Through an analysis of the poetics of display, the paper argues that the exhibition constructs a particular relationship between the Celtic Fringe and Scottish National identity that draws upon the historical discourses of the Highlands and Islands of Scotland as a place and a time \u27apart\u27. This will be shown to have implications for the display of archaeological material in museums but also for contemporary understandings of Scottish National identity. <br /

    The profile of executive function in OCD hoarders and hoarding disorder

    Get PDF
    Hoarding disorder is a new mental disorder in DSM-5. It is classified alongside OCD and other presumably related disorders in the Obsessive-Compulsive and Related Disorders chapter. We examined cognitive performance in two distinct groups comprising individuals with both OCD and severe hoarding, and individuals with hoarding disorder without comorbid OCD. Participants completed executive function tasks assessing inhibitory control, cognitive flexibility, spatial planning, probabilistic learning and reversal and decision making. Compared to a matched healthy control group, OCD hoarders showed significantly worse performance on measures of response inhibition, set shifting, spatial planning, probabilistic learning and reversal, with intact decision making. Despite having a strikingly different clinical presentation, individuals with only hoarding disorder did not differ significantly from OCD hoarders on any cognitive measure suggesting the two hoarding groups have a similar pattern of cognitive difficulties. Tests of cognitive flexibility were least similar across the groups, but differences were small and potentially reflected subtle variation in underlying brain pathology together with psychometric limitations. These results highlight both commonalities and potential differences between OCD and hoarding disorder, and together with other lines of evidence, support the inclusion of the new disorder within the new Obsessive-Compulsive and Related Disorders chapter in DSM-5

    Evolution of the patellar sesamoid bone in mammals

    Get PDF
    The patella is a sesamoid bone located in the major extensor tendon of the knee joint, in the hindlimb of many tetrapods. Although numerous aspects of knee morphology are ancient and conserved among most tetrapods, the evolutionary occurrence of an ossified patella is highly variable. Among extant (crown clade) groups it is found in most birds, most lizards, the monotreme mammals and almost all placental mammals, but it is absent in most marsupial mammals as well as many reptiles. Here, we integrate data from the literature and first-hand studies of fossil and recent skeletal remains to reconstruct the evolution of the mammalian patella. We infer that bony patellae most likely evolved between four and six times in crown group Mammalia: in monotremes, in the extinct multituberculates, in one or more stem-mammal genera outside of therian or eutherian mammals and up to three times in therian mammals. Furthermore, an ossified patella was lost several times in mammals, not including those with absent hindlimbs: once or more in marsupials (with some re-acquisition) and at least once in bats. Our inferences about patellar evolution in mammals are reciprocally informed by the existence of several human genetic conditions in which the patella is either absent or severely reduced. Clearly, development of the patella is under close genomic control, although its responsiveness to its mechanical environment is also important (and perhaps variable among taxa). Where a bony patella is present it plays an important role in hindlimb function, especially in resisting gravity by providing an enhanced lever system for the knee joint. Yet the evolutionary origins, persistence and modifications of a patella in diverse groups with widely varying habits and habitats—from digging to running to aquatic, small or large body sizes, bipeds or quadrupeds—remain complex and perplexing, impeding a conclusive synthesis of form, function, development and genetics across mammalian evolution. This meta-analysis takes an initial step toward such a synthesis by collating available data and elucidating areas of promising future inquiry

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore