906 research outputs found

    Design Science Research: Building evaluation into the construction of indigenous cultural artefacts in New Zealand

    Get PDF
    There is increasing interest in the technological construction of the cultural artefact. However the uptake of technology may be coming at a cost to the historical values sincere to cultural groups. This paper reports on evaluation techniques applied towards a recent research effort delivering a virtual reality experience that embraced the traditions of indigenous Maori within a learning, language and cultural context. A 3D computer generated artefact was constructed portraying an indigenous Maori mythological story able to interact with cultural objects using Design Science Research (DSR) as a research method, then evaluated as a cultural deployment using an array of evaluation techniques. This article expands the research material available to cultural research in DSR, as well as demonstrating how DSR evaluation can be viewed during the construction of an indigenous cultural artefact

    Determination of elastic wave velocity and relative hypocenter locations using refracted waves. II. Application to the Haicheng, China, aftershock sequence

    Get PDF
    We located the aftershocks of the 4 February 1975 Haicheng, China, aftershock sequence using an arrival time difference (ATD) simultaneous inversion method for determining the near-source (in situ) velocity and the location of the aftershocks with respect to a master event. The aftershocks define a diffuse zone, 70 km × 25 km, trending west-northwest, perpendicular to the major structural trend of the region. The main shock and most of the large aftershocks have strike-slip fault plane solutions. The preferred fault plane strikes west-northwest, and the inferred sense of motion is left-lateral. The entire Haicheng earthquake sequence appears to have been the response of an intensely faulted range boundary to a primarily east-west crustal compression and/or north-south extension. The calculated upper mantle P-wave velocity is 7.6 ± 0.09 km/sec, and the inferred crustal thickness is between 31 and 32.5 km. The low upper mantle velocity and thin crust may be indicative of local lithospheric extension

    Radiography by selective detection of scatter field velocity components

    Get PDF
    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image

    Hydrology, Water Chemistry and Ecological Relations in the Raised Mound of Cowles Bog

    Get PDF
    The Cowles Bog National Natural Landmark and the wetlands between the dunes near the south shore of Lake Michigan, in Indiana, contain plant species that are typical of circum-neutral fens. The distribution of eight, rather sharply delineated, vegetation types correlates most strongly with water level variations resulting from the presence of a 4.1-ha convex peat mound. A network of shallow ground-water wells installed in the wetland has identified an upwelling of water under artesian pressure at sites underlying the mound. The well-buffered water, containing high concentrations of inorganic solutes, is derived from an aquifer that is recharged on an upland moraine and is confined beneath a clay till sheet. A breach in this clay layer beneath the mound allows water to flow upward and radially outward as the hydraulic head is dissipated in the overlying marl and peat. The marl and organic lake sediments in the wetland were formed during the Nipissing level of ancestral Lake Michigan (4000-6000 years ago) when the wetland basin was probably a small bay of the lake. The peat mound developed when the lake level fell from the Algoma through to modern times. This increased the difference in hydraulic head and increased spring flows, which in turn induced peat formation

    Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    Get PDF
    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions

    Structure and tectonics of North China

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, 1986.Microfiche copy available in Archives and Science.Includes bibliographies.by Kaye M. Shedlock.Ph.D

    Interactions Between Ground Water and Wetlands, Southern Shore of Lake Michigan, USA

    Get PDF
    Wetlands between, and within, dune-beach complexes along the south shore of Lake Michigan are strongly affected by ground water. The hydrogeology of the glacial drift aquifer system in a 26 km2 area was investigated to determine the effects of ground water on the hydrology and hydrochemistry of Cowles Bog and its adjacent wetlands. The investigation showed that ground water from intermediate- and regional-scale flow systems discharges to Cowles Bog from confined aquifers that underlie the wetland. These flow systems are recharged in moraines south of the dune- beach complexes. Water from the confined aquifers discharges into the surficial aquifer mainly by upward leakage through a buried till sheet that serves as the confining layer. However, the till sheet is breached below a raised peat mound in Cowles Bog, allowing direct upward discharge from the confined aquifer into the surficial sand, marl, and peat. The shallow ground and wetland water in the area influenced by this leakage is a calcium magnesium bicarbonate type, with low tritium concentrations consistent with mixing of older ground water and more recent precipitation. Ground water and wetland water from surrounding areas are less mineralized and have higher tritium concentrations characteristic of precipitation in the late 1970s. The results of this study suggest that wetlands in complex hydrogeologic settings may be influenced by multiple ground-water flow systems that are affected by geomorphic features, stratigraphic discontinuities, and changes in sediment types. Discharge and recharge zones may both occur in the same wetland. Multidisciplinary studies incorporating hydrological, hydrochemical, geophysical, and sedimentological data are necessary to identify such complexities in wetland hydrology

    Distribution and phylogeny of Penelope-like elements in eukaryotes

    Get PDF
    Author Posting. © Society of Systematic Biologists, 2006. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 55 (2006): 875-885, doi:10.1080/10635150601077683.Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal genomes, the reverse transcriptase moiety can also be found in several protists, fungi, and plants, indicating its ancient origin. A comprehensive phylogenetic analysis of PLEs was conducted, based on extended sequence alignments and a considerably expanded data set. PLEs exhibit the pattern of evolution similar to that of non-LTR retrotransposons, which form deep-branching clades dating back to the Precambrian era. However, PLEs seem to have experienced a much higher degree of lineage losses than non-LTR retrotransposons. It is suggested that PLEs and non-LTR retrotransposons are included into a larger eTPRT (eukaryotic target-primed) group of retroelements, characterized by 5' truncation, variable target-site duplication, and the potential of the 3' end to participate in formation of non-autonomous derivatives.This work was supported by the U.S. National Science Foundation (MCB 0614142)
    corecore