344 research outputs found

    Progressive multifocal leukoencephalopathy associated with chemotherapy induced lymphocytopenia in solid tumors – case report of an underestimated complication

    Get PDF
    Background JC virus reactivation causing progressive multifocal leukoencephalopathy (PML) occurs preferentially in human immunodeficiency virus (HIV) positive individuals or patients suffering from hematologic neoplasms due to impaired viral control. Reactivation in patients suffering from solid malignancies is rarely described in published literature. Case Presentation Here we describe a case of PML in a male patient suffering from esophageal cancer who underwent neoadjuvant radiochemotherapy and surgical resection in curative intent resulting in complete tumor remission. The radiochemotherapy regimen contained carboplatin and paclitaxel (CROSS protocol). Since therapy onset, the patient presented with persistent and progredient leukopenia and lymphopenia in absence of otherwise known risk factors for PML. Symptom onset, which comprised aphasia, word finding disorder, and paresis, was apparent 7 months after therapy initiation. There was no relief in symptoms despite standard of care PML directed supportive therapy. The patient died two months after therapy onset. Conclusion PML is a very rare event in solid tumors without obvious states of immununosuppression and thus harbors the risk of unawareness. The reported patient suffered from lymphopenia, associated with systemic therapy, but was an otherwise immunocompetent individual. In case of neurologic impairment in patients suffering from leukopenia, PML must be considered – even in the absence of hematologic neoplasia or HIV infection

    MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer

    Get PDF
    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment

    Circulating Tumor Cells Detected by RT-PCR for CK-20 before Surgery Indicate Worse Prognostic Impact in Triple-Negative and HER2 Subtype Breast Cancer

    Get PDF
    Purpose: Circulating tumor cells (CTC) clearly correlate with unfavorable outcomes for patients with metastatic breast cancer, but the long-term prognostic implications of CTC for molecular subtypes of operable breast cancer are not yet known. We explored the relationships between previously established prognostic factors and CTC in operable breast cancer, and the significance of CTC by breast cancer molecular subtype. Methods: We retrospectively evaluated 166 patients with operable breast cancer (stage I-IIIA) diagnosed from April 1997 to May 2003. CTC were detected using cytokeratin- 20 (CK-20) mRNA expression in peripheral blood samples that were collected just prior to surgery under general anesthesia. Clinicopathological characteristics of the cancer were analyzed according to CTC status. Metastasisfree survival (MFS) and overall survival (OS) were analyzed according to CTC status and breast cancer molecular subtype. Results: CK-20 mRNA-positive CTC was detected in 37 of 166 patients (22.3%) and was not correlated with any previous clinical factors in univariate analysis (p> 0.05). After a median follow-up of 100 months, the patients with CK-20 mRNA-positive CTC had less favorable outcomes in terms of MFS and OS than those without detectable CTC (log-rank p< 0.05). Among molecular subtypes of operable breast cancer, the patients with CK-20 mRNA-positive CTC had shorter MFS and OS in triple negative and human epidermal growth factor 2 (HER2) breast cancer subtype (log-rank, p<0.05). Conclusion: CK-20 mRNA-positive CTC may lend insight into tumor progression as a prognostic indicator especially in the triple negative and HER2 subtypes of operable breast cancer

    EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair

    Get PDF
    Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ

    Aberrant DNA methylation patterns in microsatellite stable human colorectal cancers define a new marker panel for the CpG island methylator phenotype

    Get PDF
    A distinct group of colorectal carcinomas (CRCs) referred to as the “CpG island methylator phenotype” (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status

    Impact of Endoscopic Vacuum Therapy with Low Negative Pressure for Esophageal Perforations and Postoperative Anastomotic Esophageal Leaks

    Get PDF
    Introduction: Management of esophageal anastomotic leaks (AL) and esophageal perforations (EP) remains difficult and often requires an interdisciplinary treatment modality. For primary endoscopic management, self-expanding metallic stent (SEMS) placement is often considered first-line therapy. Recently, endoscopic vacuum therapy (EVT) has emerged as an alternative or adjunct for management of these conditions. So far, data for EVT in the upper gastrointestinal-tract is restricted to single centre, non-randomized trials. No studies on optimal negative pressure application during EVT exist. The aim of our study is to describe our centre’s experience with low negative pressure (LNP) EVT for these indications over the past 5-years. Patients and Methods: Between January 2014 and December 2018, 30 patients were endoscopically treated for AL (n = 23) or EP (n = 7). All patients were primarily treated with EVT and LNP between –20 and –50 mm Hg. Additional endoscopic treatment was added when EVT failed. Procedural and peri-procedural data, as well as clinical outcomes including morbidity and mortality, were analysed. Results: Clinical successful endoscopic treatment of EP and AL was achieved in 83.3% (n = 25/30), with 73.3% success using EVT alone (n = 22/30). Mean treatment duration until leak closure was 16.1 days (range 2–58 days). Additional treatment modalities for complete leak resolution was necessary in 10% (n = 3/30), including SEMS placement and fibrin glue injection. Mean hospital stay for patients with EP was shorter with 33.7 days compared to AL with 54.4 days (p = 0.08). Estimated preoperative 10-year overall survival (Charlson comorbidity score) was 39.4% in patients with AL and 59.9% in patients with EP (p = 0.26). A mean of 5.1 EVT changes (range 1–12) was needed in EP and 3.6 changes (range 1–13) in AL to achieve complete closure, switch to other treatment modality, or reach endoscopic failure (p = 0.38). Conclusion: LNP EVT enables effective minimally – invasive endoluminal leak closure from anastomotic esophageal leaks and EP in high-morbid patients. In this study, EVT was combined with other endoscopic treatment options such as SEMS placement or fibrin glue injection in order to achieve leak or perforation closure in the vast majority of patients (83.3%). Low aspiration pressures led to slower but still sufficient clinical results
    corecore