2,039 research outputs found

    Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH

    Full text link
    Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE

    The role of microglia and macrophages in glioma maintenance and progression

    Get PDF
    There is a growing recognition that gliomas are complex tumors composed of neoplastic and non-neoplastic cells, which each individually contribute to cancer formation, progression and response to treatment. The majority of the non-neoplastic cells are tumor-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, that create a supportive stroma for neoplastic cell expansion and invasion. TAMs are recruited to the glioma environment, have immune functions, and can release a wide array of growth factors and cytokines in response to those factors produced by cancer cells. In this manner, TAMs facilitate tumor proliferation, survival and migration. Through such iterative interactions, a unique tumor ecosystem is established, which offers new opportunities for therapeutic targeting

    Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice

    Get PDF
    Recent studies indicated that glial cells in tissue culture can express a variety of different voltage-gated channels, while little is known about the presence of such channels in glial cells in vivo. We used a mouse corpus callosum slice preparation, in which after postnatal day 5 (P5) more than 99% of all perikarya belong to glial cells (Sturrock, 1976), to study the current patterns of glial cells during their development in situ. We combined the patch-clamp technique with intracellular labeling using Lucifer yellow (LY) and subsequent ultrastructural characterization. In slices of mice from P6 to P8, we predominantly found cells expressing delayed-rectifier K+ currents. They were similar to those described for cultured glial precursor cells (Sontheimer et al., 1989). A-type K+ currents or Na+ currents were not or only rarely observed, in contrast to cultured glial precursors. LY labeling revealed that numerous thin processes extended radially from the perikaryon of these cells, and ultrastructural observations suggested that they resemble immature glial cells. In slices of older mice (P10-13), when myelination of the corpus callosum has already commenced, many cells were characterized by an almost linear current-voltage relationship. This current pattern was similar to cultured oligodendrocytes (Sontheimer et al., 1989). Most processes of LY-filled cells with such a current profile extended parallel to each other. Electron microscopy showed that these processes surround thick, unmyelinated axons. We suggest that cells with oligodendrocyte-type electrophysiology are promyelinating oligodendrocytes. In contrast to cultured oligodendrocytes, membrane currents of promyelinating oligodendrocytes in the slice decayed during the voltage command. This decay was due not to inactivation, but to a marked change in the potassium equilibrium potential within the voltage jump. This implies that, in the more mature corpus callosum, small membrane polarizations in a physiological range can lead to extensive changes in the K+ gradient across the glial membrane within a few milliseconds

    Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice

    Get PDF
    Microglial cells in culture are distinct from neurons, macroglial cells, and macrophages of tissues other than brain with respect to their membrane current pattern. To assess these cells in the intact tissue, we have applied the patch-clamp technique to study membrane currents in microglial cells from acute, whole brain slices of 6-9-d-old mice in an area of microglial cell invasion, the cingulum. As strategies to identify microglial cells prior to or after recording, we used binding and incorporation of Dil-acetylated low-density lipoproteins, binding of fluorescein isothiocyanate-coupled IgG via microglial Fc-receptors, and ultrastructural characterization. As observed previously for cultured microglial cells, depolarizing voltage steps activate only minute if any membrane currents, while hyperpolarizing voltage steps induced large inward currents. These currents exhibited properties of the inwardly rectifying K+ channel in that the reversal potential depended on the transmembrane K+ gradient, inactivation time constants decreased with hyperpolarization, and the current was blocked by tetraethylammonium (50 mM). This study represents the first attempt to assess microglial cells in situ using electrophysiological methods. It opens the possibility to address questions related to the function of microglial cells in the intact CNS

    Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex

    Get PDF
    Cortical spreading depression (CSD) is thought to play an important role in different pathological conditions of the human brain. Here we investigated the interaction between CSD and Ca2+ waves within the astrocyte population in slices from mouse neocortex (postnatal days 10-14). After local KCl ejection as a trigger for CSD, we recorded the propagation of Ca2+ increases within a large population of identified astrocytes in synchrony with CSD measured as intrinsic optical signal (IOS) or negative DC-potential shift. The two events spread with 39.2 +/- 3.3 mum/sec until the IOS and negative DC-potential shift decayed after approximately 1 mm. However, the astrocyte Ca2+ wave continued to propagate for up to another 500 microm but with a reduced speed of 18.3 +/- 2.5 microm/sec that is also typical for glial Ca2+ waves in white matter or culture. While blocking CSD using MK-801 (40 microm), an NMDA-receptor antagonist, the astrocyte Ca2+ wave persisted with a reduced speed (13.2 +/- 1.5 microm/sec). The specific gap junction blocker carbenoxolon (100 microm) did not prevent CSD but decelerated the speed (2.9 +/- 0.9 microm/sec) of the astrocyte Ca2+ wave in the periphery of CSD. We also found that interfering with intracellular astrocytic Ca2+ signaling by depletion of internal Ca2+ stores does not affect the spread of the IOS. We conclude that CSD determines the velocity of an accompanying astrocytic Ca2+ response, but the astrocyte Ca2+ wave penetrates a larger territory and by this represents a self-reliant phenomenon with a different mechanism of propagation

    Experimental cortical spreading depression induces NMDA receptor dependent potassium currents in microglia

    Get PDF
    Cortical spreading depression (CSD) is a propagating event of neuronal depolarization, which is considered as the cellular correlate of the migraine aura. It is characterized by a change in the intrinsic optical signal and by a negative DC potential shift. Microglia are the resident macrophages of the CNS and act as sensors for pathological changes. In the present study, we analyzed whether microglial cells might sense CSD by recording membrane currents from microglia in acutely isolated cortical mouse brain slices during an experimentally induced CSD. Coincident with the change in the intrinsic optical signal and the negative DC potential shift we recorded an increase in potassium conductance predominantly mediated by K(+) inward rectifier (Kir)2.1, which was blocked by the NMDA receptor antagonist D-AP5. Application of NMDA and an increase in extracellular K(+) mimics the CSD-induced Kir activation. Application of D-AP5, but not the purinergic receptor antagonist RB2, blocks the NMDA-induced Kir activation. The K(+) channel blocker Ba(2+) blocks both the CSD- and the NMDA-triggered increase in Kir channel activity. In addition, we could confirm previous findings that microglia in the adult brain do not express functional NMDA receptors by recording from microglia cultured from adult brain. From these observations we conclude that CSD activates neuronal NMDA receptors, which lead to an increase in extracellular [K(+)] resulting in the activation of Kir channel activity in microglia

    Properties of Doublecortin-(DCX)-Expressing Cells in the Piriform Cortex Compared to the Neurogenic Dentate Gyrus of Adult Mice

    Get PDF
    The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive “neuroblasts” exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity

    Insanity as a Defense to the Civil Fraud Penalty

    Get PDF
    Most neurological diseases are associated with chronic inflammation initiated by the activation of microglia, which produce cytotoxic and inflammatory factors. Signal transducers and activators of transcription (STATs) are potent regulators of gene expression but contribution of particular STAT to inflammatory gene expression and STAT-dependent transcriptional networks underlying brain inflammation need to be identified. In the present study, we investigated the genomic distribution of Stat binding sites and the role of Stats in the gene expression in lipopolysaccharide (LPS)-activated primary microglial cultures. Integration of chromatin immunoprecipitation-promoter microarray data and transcriptome data revealed novel Stat-target genes including Jmjd3, Ccl5, Ezr, Ifih1, Irf7, Uba7, and Pim1. While knockdown of individual Stat had little effect on the expression of tested genes, knockdown of both Stat1 and Stat3 inhibited the expression of Jmjd3 and inflammatory genes. Transcriptional regulation of Jmjd3 by Stat1 and Stat3 is a novel mechanism crucial for launching inflammatory responses in microglia. The effects of Jmjd3 on inflammatory gene expression were independent of its H3K27me3 demethylase activity. Forced expression of constitutively activated Stat1 and Stat3 induced the expression of Jmjd3, inflammation-related genes, and the production of proinflammatory cytokines as potently as lipopolysacharide. Gene set enrichment and gene function analysis revealed categories linked to the inflammatory response in LPS and Stat1C + Stat3C groups. We defined upstream pathways that activate STATs in response to LPS and demonstrated contribution of Tlr4 and Il-6 and interferon-. signaling. Our findings define novel direct transcriptional targets of Stat1 and Stat3 and highlight their contribution to inflammatory gene expression

    Incorporation of N-propanoylneuraminic acid leads to calcium oscillations in oligodendrocytes upon the application of GABA

    Get PDF
    AbstractSialylation of glycoproteins and glycolipids plays an important role during development, regeneration and pathogenesis. It has been shown that unnatural sialylation within glial cell cultures can have distinct effects on their proliferation and antigenic profiles. These cultures metabolize N-propanoylmannosamine (N-propanoylneuraminic acid precursor=P-NAP), a synthetic non-physiological precursor of neuraminic acid, resulting in the expression of N-propanoylneuraminic acid in glycoconjugates of their cell membranes [Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W. and Horstkorte, R. (1998) J. Biol. Chem. 273, 19146–19152]. To determine whether these biochemically engineered sialic acids influence calcium concentrations in cells of the oligodendrocyte lineage, mixed glial cultures of oligodendrocytes growing on top of an astrocyte monolayer were exposed to glutamate, histamine, adrenaline, γ-aminobutyric acid (GABA), high potassium (high K+) and ATP. Calcium responses in P-NAP-treated oligodendrocytes were determined by confocal microscopy with the calcium indicator fluo-3 AM, and compared with control cultures. We showed that P-NAP differentially modulated the calcium responses of individual oligodendrocytes when GABA was applied. GABA induced calcium oscillations with up to four spikes per min in 60% of oligodendrocytes when treated with P-NAP

    Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function

    Get PDF
    Microglia-brain macrophages are immune-competent cells of the CNS and respond to pathologic events. Using bacterial lipopolysaccharide (LPS) as a tool to activate cultured mouse microglia, we studied alterations in the intracellular calcium concentration ([Ca 2+]i) and in the receptor-evoked generation of transient calcium signals. LPS treatment led to a chronic elevation of basal [Ca 2+]i along with a suppression of evoked calcium signaling, as indicated by reduced [Ca 2+]i transients during stimulation with UTP and complement factor 5a. Presence of the calcium chelator BAPTA prevented the activation-associated changes in [Ca 2+]i and restored much of the signaling efficacy. We also evaluated downstream consequences of a basal [Ca 2+]i lifting during microglial activation and found BAPTA to strongly attenuate the LPS-induced release of nitric oxide (NO) and certain cytokines and chemokines. Furthermore, microglial treatment with ionomycin, an ionophore elevating basal [Ca 2+]i, mimicked the activation-induced calcium signal suppression but failed to induce release activity on its own. Our findings suggest that chronic elevation of basal [Ca 2+]i attenuates receptor-triggered calcium signaling. Moreover, increased [Ca 2+]i is required, but by itself is not sufficient, for release of NO and certain cytokines and chemokines. Elevation of basal [Ca 2+]i could thus prove a central element in the regulation of executive functions in activated microglia
    corecore