2,655 research outputs found

    Efficient Method for Computing Lower Bounds on the pp-radius of Switched Linear Systems

    Full text link
    This paper proposes lower bounds on a quantity called LpL^p-norm joint spectral radius, or in short, pp-radius, of a finite set of matrices. Despite its wide range of applications to, for example, stability analysis of switched linear systems and the equilibrium analysis of switched linear economical models, algorithms for computing the pp-radius are only available in a very limited number of particular cases. The proposed lower bounds are given as the spectral radius of an average of the given matrices weighted via Kronecker products and do not place any requirements on the set of matrices. We show that the proposed lower bounds theoretically extend and also can practically improve the existing lower bounds. A Markovian extension of the proposed lower bounds is also presented

    On the Synchronizing Probability Function and the Triple Rendezvous Time for Synchronizing Automata

    Full text link
    Cerny's conjecture is a longstanding open problem in automata theory. We study two different concepts, which allow to approach it from a new angle. The first one is the triple rendezvous time, i.e., the length of the shortest word mapping three states onto a single one. The second one is the synchronizing probability function of an automaton, a recently introduced tool which reinterprets the synchronizing phenomenon as a two-player game, and allows to obtain optimal strategies through a Linear Program. Our contribution is twofold. First, by coupling two different novel approaches based on the synchronizing probability function and properties of linear programming, we obtain a new upper bound on the triple rendezvous time. Second, by exhibiting a family of counterexamples, we disprove a conjecture on the growth of the synchronizing probability function. We then suggest natural follow-ups towards Cernys conjecture.Comment: A preliminary version of the results has been presented at the conference LATA 2015. The current ArXiv version includes the most recent improvement on the triple rendezvous time upper bound as well as formal proofs of all the result

    On random primitive sets, directable NDFAs and the generation of slowly synchronizing DFAs

    Full text link
    We tackle the problem of the randomized generation of slowly synchronizing deterministic automata (DFAs) by generating random primitive sets of matrices. We show that when the randomized procedure is too simple the exponent of the generated sets is O(n log n) with high probability, thus the procedure fails to return DFAs with large reset threshold. We extend this result to random nondeterministic automata (NDFAs) by showing, in particular, that a uniformly sampled NDFA has both a 2-directing word and a 3-directing word of length O(n log n) with high probability. We then present a more involved randomized algorithm that manages to generate DFAs with large reset threshold and we finally leverage this finding for exhibiting new families of DFAs with reset threshold of order Ω(n2/4) \Omega(n^2/4) .Comment: 31 pages, 9 figures. arXiv admin note: text overlap with arXiv:1805.0672

    Data-driven computation of invariant sets of discrete time-invariant black-box systems

    Full text link
    We consider the problem of computing the maximal invariant set of discrete-time black-box nonlinear systems without analytic dynamical models. Under the assumption that the system is asymptotically stable, the maximal invariant set coincides with the domain of attraction. A data-driven framework relying on the observation of trajectories is proposed to compute almost-invariant sets, which are invariant almost everywhere except a small subset. Based on these observations, scenario optimization problems are formulated and solved. We show that probabilistic invariance guarantees on the almost-invariant sets can be established. To get explicit expressions of such sets, a set identification procedure is designed with a verification step that provides inner and outer approximations in a probabilistic sense. The proposed data-driven framework is illustrated by several numerical examples.Comment: A shorter version with the title "Scenario-based set invariance verification for black-box nonlinear systems" is published in the IEEE Control Systems Letters (L-CSS

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤d\leq d, or (ii) a polytopic Lyapunov function with ≤d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with ≤d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls

    Observable Graphs

    Full text link
    An edge-colored directed graph is \emph{observable} if an agent that moves along its edges is able to determine his position in the graph after a sufficiently long observation of the edge colors. When the agent is able to determine his position only from time to time, the graph is said to be \emph{partly observable}. Observability in graphs is desirable in situations where autonomous agents are moving on a network and one wants to localize them (or the agent wants to localize himself) with limited information. In this paper, we completely characterize observable and partly observable graphs and show how these concepts relate to observable discrete event systems and to local automata. Based on these characterizations, we provide polynomial time algorithms to decide observability, to decide partial observability, and to compute the minimal number of observations necessary for finding the position of an agent. In particular we prove that in the worst case this minimal number of observations increases quadratically with the number of nodes in the graph. From this it follows that it may be necessary for an agent to pass through the same node several times before he is finally able to determine his position in the graph. We then consider the more difficult question of assigning colors to a graph so as to make it observable and we prove that two different versions of this problem are NP-complete.Comment: 15 pages, 8 figure

    On the Finiteness Property for Rational Matrices

    Get PDF
    We analyze the periodicity of optimal long products of matrices. A set of matrices is said to have the finiteness property if the maximal rate of growth of long products of matrices taken from the set can be obtained by a periodic product. It was conjectured a decade ago that all finite sets of real matrices have the finiteness property. This conjecture, known as the ``finiteness conjecture", is now known to be false but no explicit counterexample to the conjecture is available and in particular it is unclear if a counterexample is possible whose matrices have rational or binary entries. In this paper, we prove that finite sets of nonnegative rational matrices have the finiteness property if and only if \emph{pairs} of \emph{binary} matrices do. We also show that all {pairs} of 2Ă—22 \times 2 binary matrices have the finiteness property. These results have direct implications for the stability problem for sets of matrices. Stability is algorithmically decidable for sets of matrices that have the finiteness property and so it follows from our results that if all pairs of binary matrices have the finiteness property then stability is decidable for sets of nonnegative rational matrices. This would be in sharp contrast with the fact that the related problem of boundedness is known to be undecidable for sets of nonnegative rational matrices.Comment: 12 pages, 1 figur

    Resonance and marginal instability of switching systems

    Full text link
    We analyse the so-called Marginal Instability of linear switching systems, both in continuous and discrete time. This is a phenomenon of unboundedness of trajectories when the Lyapunov exponent is zero. We disprove two recent conjectures of Chitour, Mason, and Sigalotti (2012) stating that for generic systems, the resonance is sufficient for marginal instability and for polynomial growth of the trajectories. We provide a characterization of marginal instability under some mild assumptions on the sys- tem. These assumptions can be verified algorithmically and are believed to be generic. Finally, we analyze possible types of fastest asymptotic growth of trajectories. An example of a pair of matrices with sublinear growth is given
    • …
    corecore