176 research outputs found

    TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid

    Get PDF
    Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Topoisomerase IIα Binding Domains of Adenomatous Polyposis Coli Influence Cell Cycle Progression and Aneuploidy

    Get PDF
    Truncating mutations in the tumor suppressor gene APC (Adenomatous Polyposis Coli) are thought to initiate the majority of colorectal cancers. The 15- and 20-amino acid repeat regions of APC bind beta-catenin and have been widely studied for their role in the negative regulation of canonical Wnt signaling. However, functions of APC in other important cellular processes, such as cell cycle control or aneuploidy, are only beginning to be studied. Our previous investigation implicated the 15-amino acid repeat region of APC (M2-APC) in the regulation of the G2/M cell cycle transition through interaction with topoisomerase IIalpha (topo IIalpha).We now demonstrate that the 20-amino acid repeat region of APC (M3-APC) also interacts with topo IIalpha in colonic epithelial cells. Expression of M3-APC in cells with full-length endogenous APC causes cell accumulation in G2. However, cells with a mutated topo IIalpha isoform and lacking topo IIbeta did not arrest, suggesting that the cellular consequence of M2- or M3-APC expression depends on functional topoisomerase II. Both purified recombinant M2- and M3-APC significantly enhanced the activity of topo IIalpha. Of note, although M3-APC can bind beta-catenin, the G2 arrest did not correlate with beta-catenin expression or activity, similar to what was seen with M2-APC. More importantly, expression of either M2- or M3-APC also led to increased aneuploidy in cells with full-length endogenous APC but not in cells with truncated endogenous APC that includes the M2-APC region.Together, our data establish that the 20-amino acid repeat region of APC interacts with topo IIalpha to enhance its activity in vitro, and leads to G2 cell cycle accumulation and aneuploidy when expressed in cells containing full-length APC. These findings provide an additional explanation for the aneuploidy associated with many colon cancers that possess truncated APC

    Effect of heptavalent pneumococcal conjugate vaccination on invasive pneumococcal disease in preterm born infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence for protection of preterm born infants from invasive pneumococcal disease (IPD) by 7-valent pneumococcal conjugate vaccination (PCV7) is relatively sparse. Data from randomized trials is based on relatively small numbers of preterm born children.</p> <p>Methods</p> <p>We report data from active prospective surveillance of IPD in children in Germany. The cohorts of preterm born children in 2000 and 2007 and the respective whole birth cohorts are compared regarding occurrence of IPD.</p> <p>Results</p> <p>After introduction of PCV7 we observed a reduction in the rate of IPD in preterm born infants comparing the 2000 and 2007 birth cohort. The rate of IPD among the whole birth cohorts was reduced from 15.0 to 8.5 notifications per 100,000 (<it>P </it>< .001). The impact among the preterm birth cohort was comparable: A reduction in notification rate from 26.1 to 16.7 per 100,000 comparing the 2000 with the 2007 preterm birth cohort (<it>P </it>= .39). Preterm born infants with IPD were either unvaccinated or vaccinated delayed or incomplete.</p> <p>Conclusions</p> <p>This adds to evidence that PCV7 also protects preterm born infants effectively from IPD. Preterm born infants should receive pneumococcal vaccination according to their chronological age.</p

    Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semi-custom foot orthoses (SCO) are thought to be a cost-effective alternative to custom-made devices. However, previous biomechanical research involving either custom or SCO has only focused on rearfoot biomechanics. The purpose of this study was therefore to determine changes in multi-segment foot biomechanics during shod walking with and without an SCO. We chose to investigate an SCO device that incorporates a heat-moulding process, to further understand if the moulding process would significantly alter rearfoot, midfoot, or shank kinematics as compared to a no-orthotic condition. We hypothesized the SCO, whether moulded or non-moulded, would reduce peak rearfoot eversion, tibial internal rotation, arch deformation, and plantar fascia strain as compared to the no-orthoses condition.</p> <p>Methods</p> <p>Twenty participants had retroreflective markers placed on the right limb to represent forefoot, midfoot, rearfoot and shank segments. 3D kinematics were recorded using an 8-camera motion capture system while participants walked on a treadmill.</p> <p>Results</p> <p>Plantar fascia strain was reduced by 34% when participants walked in either the moulded or non-moulded SCO condition compared to no-orthoses. However, there were no significant differences in peak rearfoot eversion, tibial internal rotation, or medial longitudinal arch angles between any conditions.</p> <p>Conclusions</p> <p>A semi-custom moulded orthotic does not control rearfoot, shank, or arch deformation but does, however, reduce plantar fascia strain compared to walking without an orthoses. Heat-moulding the orthotic device does not have a measurable effect on any biomechanical variables compared to the non-moulded condition. These data may, in part, help explain the clinical efficacy of orthotic devices.</p

    Recombination in West Nile Virus: minimal contribution to genomic diversity

    Get PDF
    Recombination is known to play a role in the ability of various viruses to acquire sequence diversity. We consequently examined all available West Nile virus (WNV) whole genome sequences both phylogenetically and with a variety of computational recombination detection algorithms. We found that the number of distinct lineages present on a phylogenetic tree reconstruction to be identical to the 6 previously reported. Statistically-significant evidence for recombination was only observed in one whole genome sequence. This recombination event was within the NS5 polymerase coding region. All three viruses contributing to the recombination event were originally isolated in Africa at various times, with the major parent (SPU116_89_B), minor parent (KN3829), and recombinant sequence (AnMg798) belonging to WNV taxonomic lineages 2, 1a, and 2 respectively. This one isolated recombinant genome was out of a total of 154 sequences analyzed. It therefore does not seem likely that recombination contributes in any significant manner to the overall sequence variation within the WNV genome

    Autophagy and Exosomes in the Aged Retinal Pigment Epithelium: Possible Relevance to Drusen Formation and Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch's membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    Get PDF
    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid rafts to gain its full functionality

    The Drosophila FoxA Ortholog Fork Head Regulates Growth and Gene Expression Downstream of Target of Rapamycin

    Get PDF
    Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels
    corecore