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 TGF-�2- and H 2 O 2 -Induced Biological Changes in 
Optic Nerve Head Astrocytes Are Reduced by the 
Antioxidant Alpha-Lipoic Acid 

 Alice L. Yu    a     Jerome Moriniere    a     Ulrich Welge-Lussen    b   

  a    Department of Ophthalmology, Ludwig-Maximilian University,  Munich , and  b    Department of Ophthalmology, 
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that TGF- �  2 - and H 2 O 2 -stimulated gene expressions could be 
prevented by pretreatment with the antioxidant LA in cul-
tured human ONH astrocytes. Therefore, it is tempting to 
speculate that the use of antioxidants could have protective 
effects in glaucomatous optic neuropathy. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Primary open-angle glaucoma is an optic neuropathy, 
which clinically presents with progressive excavation of 
the optic disk and corresponding visual field defects. His-
tologically, glaucomatous optic neuropathy is character-
ized by distinct compositional and structural changes in 
the optic nerve head (ONH), which are largely attributed 
to cellular responses of reactive ONH astrocytes  [1, 2] . 
Characteristic responses of reactive astrocytes in the 
glaucomatous ONH are increased expression of so-called 
heat shock proteins (Hsps)  [3, 4] , and increased extracel-
lular matrix (ECM) production  [5–7] . Previously, it has 
been reported that the process of astrocytic reactivation 
in glaucomatous disease is accompanied by elevated ex-
pression of the small Hsps  � B-crystallin  [3]  and Hsp27 
 [4] . Hsps are molecular chaperones, which stabilize pro-
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 Abstract 

  Background/Aims:  The goal of the present study was to de-
termine whether transforming growth factor- �  2  (TGF- �  2 )- 
and oxidative stress-induced cellular changes in cultured hu-
man optic nerve head (ONH) astrocytes could be reduced by 
pretreatment with the antioxidant  � -lipoic acid (LA).  Meth-

ods:  Cultured ONH astrocytes were treated with 1.0 ng/ml 
TGF- �  2  for 24 h or 200  �  M  hydrogen peroxide (H 2 O 2 ) for 1 h. 
Lipid peroxidation was measured by a decrease in  cis -pari-
naric acid fluorescence. Additionally, cells were pretreated 
with different concentrations of LA before TGF- �  2  or H 2 O 2  
exposure. Expressions of the heat shock protein (Hsp)  � B-
crystallin and Hsp27, the extracellular matrix (ECM) compo-
nent fibronectin and the ECM-modulating protein connec-
tive tissue growth factor (CTGF) were examined with immu-
nohistochemistry and real-time PCR analysis.  Results:  Both 
TGF- �  2  and H 2 O 2  increased lipid peroxidation. Treatment of 
astrocytes with TGF- �  2  and H 2 O 2  upregulated the expression 
of  � B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment 
with different concentrations of LA reduced the TGF- �  2 - and 
H 2 O 2 -stimulated gene expressions.  Conclusion:  We showed 
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tein folding and suppress protein aggregation  [8, 9] . Be-
sides these changes, other findings could be observed in 
human ONH astrocytes such as an increased expression 
of the ECM component fibronectin  [10, 11]  and the ECM-
modulating protein connective tissue growth factor 
(CTGF)  [12, 13] .

  In general, it is known that astrocytic reactivation 
takes place during stressful events  [14, 15] . In the patho-
genesis of primary open-angle glaucoma, various stress 
factors such as transforming growth factor- �  2  (TGF- �  2 ) 
 [16–19]  and oxidative stress  [20–22]  may play an impor-
tant role. One common characteristic of both TGF- �  2  
and oxidative stress is the generation of reactive oxygen 
species (ROS)  [23, 24] . Increased levels of ROS are able to 
injure tissues by interacting with lipids, proteins, or 
DNA  [25] . There is a growing body of evidence suggest-
ing that ROS production is involved in the progression 
of glaucomatous neurodegeneration  [22, 24, 26, 27] . In 
particular, the optic nerve as part of the human brain is 
very sensitive to stress from ROS compared to other tis-
sues  [28] .

  Based on these findings, the goal of this study was to 
examine in vitro whether or not TGF- �  2  and H 2 O 2 , two 
known pathogenetic factors for glaucoma, induce char-
acteristic glaucomatous changes in cultured human 
ONH astrocytes via ROS production. To provide a proof-
of-principle of ROS-mediated gene expressions, we used 
the antioxidant  � -lipoic acid (LA) to block these stress-
induced changes. LA has already been tested for the ad-
juvant therapy of other oxidative stress-associated dis-
eases such as diabetic neuropathy, multiple sclerosis and 
Alzheimer’s diseases  [29–31] . An antioxidant effect of LA 
has been detected both by animal experiments and cell 
culture studies  [32, 33] . Currently, it is discussed that an-
tioxidants could have neuroprotective effects on the 
glaucomatous ONH  [34, 35] . In this study, we investi-
gated, in particular, whether or not TGF- �  2 - and H 2 O 2 -
induced synthesis of the small Hsps  � B-crystallin and 
Hsp27, the ECM component fibronectin and the ECM-
modulating protein CTGF could be reduced by pretreat-
ment with the antioxidant LA in cultured human ONH 
astrocytes. 

  Materials and Methods 

 Cell Culture 
 Primary cell cultures of human lamina cribrosa astrocytes 

were obtained from the eye bank of the Ludwig-Maximilian Uni-
versity, Munich, Germany. Monolayer cultures were established 
from eyes of 5 human donors between 52 and 69 years of age. 

These eyes were obtained 4–12 h postmortem without any history 
of eye diseases. Methods of securing human tissue were humane, 
included proper consent and approval, complied with the Decla-
ration of Helsinki, and were approved by the local ethics commit-
tee. Astrocytes of the ONH were prepared, grown, and classified 
as described previously  [36–38] . In brief, eyes were cut equatori-
ally behind the ora serrata and the ONH was isolated from the 
neighboring tissues. The ONH was sagitally dissected under a 
microscope and the lamina cribrosa was identified. Disks of lam-
ina cribrosa were prepared by dissection from the pre- and post-
laminar region, subsequently cut into 3–4 explants and placed 
 in Petri dishes with 2 ml Dulbecco’s Modified Eagle Medium 
(DMEM)/F-12 supplemented with 10% fetal bovine serum (FBS; 
Gibco-Life Science Technology, Karlsruhe, Germany), 5 ng/ml 
human basic pituitary fibroblast growth factor (Sigma, Deisen-
hofen, Germany), 5 ng/ml human platelet-derived growth factor-
A chain (PDGF AA; Sigma), 50 U/ml penicillin and 50  � g/ml 
streptomycin (Gibco-Life Science Technology) at 37   °   C in a 5% 
CO 2  incubator. To isolate ONH astrocytes, the primary cell cul-
tures were first plated in serum-free astrocyte growth medium 
(Cambrex Bio Science, Verviers, Belgium) for 24 h and then 
changed to astrocyte growth medium containing 5% FBS  [39] . 
Other cell populations such as lamina cribrosa cells failed to at-
tach in serum-free medium and were removed with medium 
change. Subsequently, cultured ONH astrocytes were maintained 
in DMEM/F-12 with 10% FBS. ONH astrocytes were distin-
guished from adjacent cells by their morphology and immunohis-
tochemical staining (data not shown)  [36, 38] . Primary human 
ONH astrocytes were characterized by positive immunostaining 
for glial fibrillary acidic protein (Sigma), neural cell adhesion 
molecule (Serotec, Düsseldorf, Germany), vimentin (Sigma), des-
min (Abcam, Cambridge, UK), S100 (Invitrogen, Karlsruhe, Ger-
many), and Pax2 (Abcam), and negative immunostaining for 
A2B5 (Chemicon International, Hampshire, UK) and smooth 
muscle actin (Dako, Glostrup, Denmark)  [36, 37, 40–42] . Only 
cell cultures which were at least 95% positive for glial fibrillary 
acidic protein, neural cell adhesion molecule, vimentin, desmin, 
S100, Pax2, and negative for A2B5 and smooth muscle actin were 
used in this study  [38] .

  Second- to fifth-passage astrocytes were grown to confluence 
in 35-mm Petri dishes in DMEM/F-12 supplemented with 10% 
FBS at 37   °   C and 5% CO 2 . At confluence, cells were washed and 
incubated overnight in serum-free DMEM/F-12 medium for 24 
h. LA (Sigma) was dissolved in 95% (v/v) ethanol. Cells were pre-
treated with 50, 100, 150 and 200  �  M  LA or the corresponding 
ethanol volume for 24 h in fresh serum-free medium. Afterwards, 
cells were either treated with TGF- �  2  or oxidative stress. Cells 
were kept with 1.0 ng/ml active TGF- �  2  (R&D Systems, Wies-
baden, Germany) for 24 h. Oxidative stress exposure was per-
formed with 200  �  M  H 2 O 2  for 1 h with subsequent incubation 
under serum-free conditions for 24 h. In control cultures, the me-
dium was changed at the same time points. The tetrazolium dye 
reduction assay [MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide; Sigma] was used to test cell viability be-
fore and at the end of treatment and did not reveal any signs of 
increased cell death in TGF- �  2 - or H 2 O 2 -treated cells (data not 
shown). All experiments were performed at least in triplicate in 
astrocyte cultures from 4 different donors.
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  Assessment of Lipid Peroxidation 
 Oxidative stress can be assessed by markers of lipid peroxida-

tion. A sensitive and specific assay for lipid peroxidation is based 
on metabolic incorporation of the fluorescent oxidation-sensitive 
fatty acid,  cis -parinaric acid (PNA), a natural 18-carbon fatty acid 
with 4 conjugated double bonds, into membrane phospholipids of 
cells  [43, 44] . Oxidation of PNA results in disruption of the con-
jugated double bond system that cannot be resynthesized in 
mammalian cells. Therefore, lipid peroxidation was estimated by 
measuring loss of PNA fluorescence. Briefly, treated cells were 
incubated with 10  �  M  PNA (Molecular Probes, Invitrogen, UK) 
at 37   °   C for 30 min in the dark. The media was then removed and 
cells washed three times with PBS. Afterwards, cells were scraped 
into 2 ml PBS using a rubber policeman. The suspension was then 
added to a fluorescence cuvette and measured at 312-nm excita-
tion and 455-nm emission. A blank (unlabeled cells) was mea-
sured and subtracted from all readings. All experiments were per-
formed at least in triplicate in astrocyte cultures from 4 different 
donors.

  Immunohistochemistry 
 Cultured human ONH astrocytes, grown in 4-well plastic 

chamber slides, were treated as described above. After incubation, 
cells were washed with PBS, fixed with 4% paraformaldehyde for 
15 min and subsequently washed twice with PBS containing 0.1% 
Triton X-100. Primary incubation with all samples was performed 
with a rabbit anti-human  � B-crystallin antibody (Stressgen Bio-
reagents, Hamburg, Germany) and a rabbit anti-human Hsp27 
antibody (Stressgen Bioreagents) diluted 1:   200 in PBS containing 
5% bovine serum albumin for 4 h at room temperature. Control 
samples were incubated with PBS and 5% bovine serum albumin 
but without the primary antibodies. Afterwards, cells were 
washed three times with PBS, and incubated with fluorescein-
conjugated goat anti-rabbit Cy3 antibody (diluted 1:   500 in PBS; 
Dianova, Hamburg, Germany) for 1 h at room temperature. Cells 
were then rinsed in PBS, mounted with Kaiser’s glycerin jelly 
(Merck, Darmstadt, Germany) and analyzed under a fluorescence 
microscope (Leica DMR, Leica Microsystems, Wetzlar, Germa-
ny). Representative areas were documented with Leica IM 1000 
software (Leica Microsystems, Heerbrugg, Switzerland). All ex-
periments were performed at least in triplicate in astrocyte cul-
tures from 4 different donors.

  RNA Isolation and Real-Time PCR 
 Total RNA was isolated from 10-mm Petri dishes by the gua-

nidinium thiocyanate-phenol-chloroform extraction method 
(Stratagene, Heidelberg, Germany). Structural integrity of the 
RNA samples was confirmed by electrophoresis in 1% Tris-ace-
tate-EDTA agarose gels. Yield and purity were determined photo-
metrically. After RNA isolation, mRNA was transcribed to cDNA 
by reverse transcriptase. This cDNA was then used for specific 
real-time PCR. Quantification of human mRNA was performed 
during 40 cycles with a LightCycler Instrument (LightCycler Sys-
tem, Roche Diagnostics, Mannheim, Germany). The primers se-
lected were  � B-crystallin forward primer 5 � -cagctggtttgacactg-
gac-3 �  (positions, 220–239) and reverse primer 5 � -gcttcacatccagg-
ttgaca-3 �  (positions, 274–293); Hsp27 forward primer 5 � -
tgacggtcaagaccaagga-3 �  (positions, 433–451) and reverse primer 
5 � -tgtagccatgctcgtcctg-3 �  (positions, 489–507); fibronectin for-
ward primer 5 � -ctggccgaaaatacattgtaaa-3 �  (positions, 2611–2632) 

and reverse primer 5 � -ccacagtcgggtcaggag-3 �  (positions, 2707–
2724); CTGF forward primer 5 � -ctgcaggctagagaagcagag-3 �  (posi-
tions, 826–846) and reverse primer 5 � -gatgcactttttgcccttct-3 �  (po-
sitions, 897–916), and 18S rRNA forward primer 5 � -ctcaacacg-
ggaaacctcac-3 �  (positions, 1348–1367) and reverse primer 5 � -
cgctccaccaactaagaacg-3 �  (positions, 1438–1457). Primers and 
probes were found with the program ProbeFinder Version 2.04. 
The standard curve was obtained from probes of 4 different un-
treated human ONH astrocyte cultures. To normalize differences 
of the amount of total RNA added to each reaction, 18S rRNA was 
simultaneously processed in the same sample as an internal con-
trol. The level of  � B-crystallin, Hsp27, fibronectin or CTGF 
mRNA was determined as the relative ratio, which was calculated 
by dividing the level of  � B-crystallin, Hsp27, fibronectin or CTGF 
mRNA by the level of the 18S rRNA gene in the same samples. All 
experiments were performed at least in triplicate in astrocyte cul-
tures from 4 different donors.

  Statistical Analysis 
 Results are expressed as mean  8  SD. For comparison of means 

between two groups, an unpaired t test was employed. Statistical 
significance was defined as p  !  0.05.

  Results 

 TGF- �  2  and H 2 O 2  Increased Lipid Peroxidation 
 In our experiments, lipid peroxidation of the cyto-

plasm membrane of cultured human ONH astrocytes 
was assessed by increased loss of PNA fluorescence. We 
could observe a decrease in PNA fluorescence after 24 h 
of TGF- �  2  treatment to 75.1  8  5.5% and after exposure 
to 200  �  M  H 2 O 2  to 71.2  8  12.7% as compared to untreat-
ed control cells ( fig. 1 ). Pretreatment of astrocytes with 
200  �  M  LA could block the TGF- �  2 - and H 2 O 2 -mediated 
decrease in PNA fluorescence ( fig. 1 ). 

 TGF- �  2 - and H 2 O 2 -Induced  � B-Crystallin Expression 
Could Be Reduced by Pretreatment with LA 
 Immunohistochemical stainings showed a marked in-

crease in  � B-crystallin expression after TGF- �  2  treat-
ment for 24 h ( fig. 2 b) compared to untreated control cells 
( fig.  2 a). Since immunohistochemistry is not a valid 
quantification method, we additionally performed real-
time PCR analyses to examine the mRNA expression. 
Human ONH astrocytes were treated with 1.0 ng/ml 
TGF- �  2  for 24 h or 200  �  M  H 2 O 2  for 1 h ( fig. 3 ). The sig-
nals generated by real-time PCR analysis in untreated 
control cells were set to 100% ( fig. 3 ). There was a marked 
upregulation of  � B-crystallin mRNA expression both af-
ter 24 h of TGF- �  2  treatment (2.7  8  0.8-fold) ( fig. 3 a) and 
after exposure of cells to 200  �  M  H 2 O 2  for 1 h (1.9  8  0.5-
fold) ( fig. 3 b) compared to untreated control cells. Expo-
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sure of cells to the maximal LA concentration (200  �  M ) 
and its corresponding ethanol volume had no effects on 
 � B-crystallin expression ( fig. 3 a, b). In contrast, pretreat-
ment of astrocytes with 50, 100, 150, 200  �  M  LA could 
reduce the TGF- �  2 - and H 2 O 2 -induced  � B-crystallin ex-
pression ( fig.  3 a, b). The most prominent reduction of 
TGF- �  2 -induced  � B-crystallin expression was observed 
with pretreatment with 150 and 200  �  M  LA (1.2  8  0.2- 
and 1.2  8  0.5-fold) ( fig. 3 a). H 2 O 2 -induced  � B-crystallin 
expression was most effectively blocked by pretreatment 
of cells with 200  �  M  LA (1.4  8  0.2-fold) ( fig. 3 b). These 
results could be confirmed by immunohistochemical 
stainings ( fig. 2 c–e).

  TGF- �  2 - and H 2 O 2 -Induced Hsp27 Expression Could 
Be Reduced by Pretreatment with LA 
 Similar to the small Hsp  � B-crystallin, immunohisto-

chemical stainings also demonstrated a marked increase 
in Hsp27 expression after 24 h of TGF- �  2  treatment 
( fig. 2 g) compared to untreated control cells ( fig. 2 f). To 
perform a quantitative measurement, real-time PCR anal-
yses were conducted. Human ONH astrocytes were treat-
ed with 1.0 ng/ml TGF- �  2  for 24 h or 200  �  M  H 2 O 2  for
1 h ( fig. 4 ). The signals generated by real-time PCR analy-
sis in untreated control cells were set to 100% ( fig. 4 ). There 
was a marked increase in Hsp27 mRNA expression both 
after 24 h of TGF- �  2  treatment (3.2  8  0.6-fold) ( fig. 4 a) 
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  Fig. 2.  Immunohistochemical stainings of cultured human ONH 
astrocytes for the small Hsp  � B-crystallin ( a–e ) and Hsp27 ( f–j ). 
 a  Basal levels of  � B-crystallin staining were observed in untreat-
ed ONH astrocytes incubated in serum-free medium for 24 h.
 b  Treatment with 1.0 ng/ml TGF- �  2  for 24 h increased  � B-crys-
tallin expression.  c  Corresponding ethanol volume of 200  �  M  LA 

concentration ( d ) had no additional effects on  � B-crystallin ex-
pression compared to untreated control cells.  e  TGF- �  2 -induced 
 � B-crystallin expression could be blocked by pretreatment with 
200  �  M  LA.  f–j  Immunohistochemical stainings for Hsp27 ex-
pression were conducted under the same conditions as described 
for  a–e  and showed comparable results. Scale bar = 100  � m. 

  Fig. 1.  Measurements of ROS by loss of PNA fluorescence in cul-
tured human ONH astrocytes. Cells were either treated with 1.0 
ng/ml TGF- �  2  for 24 h or exposed to 200  �  M  H 2 O 2  for 1 h with 
subsequent incubation under serum-free conditions for 24 h. Pre-
treatment was conducted with 200  �  M  LA for 24 h before stress 
exposure. Data are expressed as percentage compared to untreat-
ed control cells kept for the same time periods and represent the 
mean  8  SD of results of 12 experiments with 4 different cell cul-
tures from different donors ( *  p  !  0.05). Co = Control. 
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  Fig. 3.  Real-time PCR analysis of  � B-crys-
tallin mRNA expression. Cells were pre-
treated with 50, 100, 150 and 200  �                      M  LA 
and then exposed either to 1.0 ng/ml TGF-
   �      2  ( a ) for 24 h or 200  �    M  H 2 O 2  ( b ) for 1 h 
with subsequent incubation under serum-
free conditions for 24 h. Results were nor-
malized to 18S rRNA as reference. Data are 
expressed as x-fold changes compared to 
untreated control cells and represent the 
mean  8  SD of results of 12 experiments 
with 4 different cell cultures from different 
donors ( *  p  !  0.05). Co = Control.        
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* *  Fig. 4.  Real-time PCR analysis of Hsp27 
mRNA expression. Cells were pretreated 
with 50, 100, 150 and 200  �                        M  LA and then 
exposed either to 1.0 ng/ml TGF-   �      2  ( a ) for 
24 h or 200  �    M  H 2 O 2  ( b ) for  1 h with sub-
sequent incubation under serum-free con-
ditions for 24 h. Results were normalized 
to 18S rRNA as reference. Data are ex-
pressed as x-fold changes compared to un-
treated control cells and represent the 
mean  8  SD of results of 12 experiments 
with 4 different cell cultures from different 
donors ( *  p  !  0.05). Co = Control.       
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  Fig. 5.  Real-time PCR analysis of fibronec-
tin mRNA expression. Cells were pretreat-
ed with 50, 100, 150 and 200  �                        M  LA and 
then exposed either to 1.0 ng/ml TGF-   �      2  
( a ) for 24 h or 200  �    M  H 2 O 2  ( b ) for 1 h with 
subsequent incubation under serum-free 
conditions for 24 h. Results were normal-
ized to 18S rRNA as reference. Data are ex-
pressed as x-fold changes compared to un-
treated control cells and represent the 
mean  8  SD of results of 12 experiments 
with 4 different cell cultures from different 
donors ( *  p  !  0.05). Co = Control.       

  Fig. 6.  Real-time PCR analysis of CTGF 
mRNA expression. Cells were pretreated 
with 50, 100, 150 and 200  �                        M  LA and then 
exposed either to 1.0 ng/ml TGF-   �      2  ( a ) for 
24 h or 200  �    M  H 2 O 2  ( b ) for  1 h with sub-
sequent incubation under serum-free con-
ditions for 24 h. Results were normalized 
to 18S rRNA as reference. Data are ex-
pressed as x-fold changes compared to un-
treated control cells and represent the 
mean  8  SD of results of 12 experiments 
with 4 different cell cultures from different 
donors ( *  p  !  0.05). Co = Control.       
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and after exposure of cells to 200  �  M  H 2 O 2  for  1 h (1.7  8  
0.5-fold) ( fig. 4 b) compared to untreated control cells. The 
maximal LA concentration (200  �  M ) and its correspond-
ing ethanol volume had no influence on Hsp27 expression 
( fig. 4 a, b). However, pretreatment of astrocytes with dif-
ferent concentrations of LA could prevent the TGF- �  2 - 
and H 2 O 2 -induced Hsp27 expression ( fig. 4 a, b). TGF- �  2 -
mediated Hsp27 upregulation could be most effectively 
blocked by pretreatment of astrocytes with 200  �  M  LA 
(0.9  8  0.5-fold) ( fig. 4 a), while H 2 O 2 -mediated Hsp27 ex-
pression could be reduced by 150 and 200  �  M  LA to 1.3 
 8  0.2 and 1.3  8  0.5-fold ( fig. 4 b). Immunohistochemical 
stainings supported these observations ( fig. 2 h, i, j).

  TGF- �  2 - and H 2 O 2 -Induced Fibronectin Expression 
Could Be Blocked by Pretreatment with LA 
 To evaluate whether or not ECM components such as 

fibronectin can be induced by TGF- �  2  and H 2 O 2  in cul-
tured human ONH astrocytes, cells were treated either 
with 1.0 ng/ml TGF- �  2  for 24 h or 200  �  M  H 2 O 2  for 1 h 
( fig. 5 ). The signals generated by real-time PCR analyses 
in untreated control cells were set to 100% ( fig. 5 ). Fibro-
nectin mRNA expression could be increased both by 
TGF- �  2  treatment (2.6  8  0.6-fold) ( fig.  5 a) and after 
H 2 O 2  exposure (2.5  8  0.5-fold) ( fig. 5 b) compared to un-
treated control cells. To further examine whether or not 
ROS are involved in TGF- �  2 - and H 2 O 2 -induced fibro-
nectin expression, cultured human ONH astrocytes were 
pretreated with different concentrations of LA ( fig.  5 ). 
TGF- �  2 -mediated fibronectin upregulation could be 
most effectively prevented by pretreatment with 150 and 
200  �  M  LA (1.4  8  0.3- and 1.4  8  0.4-fold) ( fig. 5 a). H 2 O 2 -
stimulated fibronectin expression was markedly blocked 
by pre-exposure of cells to 150 and 200  �  M  LA (1.4  8  0.1- 
and 1.4  8  0.4-fold) ( fig. 5 b).

  TGF- �  2 - and H 2 O 2 -Induced CTGF Expression Could 
Be Prevented by Pretreatment with LA  
 To investigate CTGF mRNA expression, the signals 

generated by real-time PCR analyses in untreated control 
cells were set to 100% ( fig. 6 ). Treatment with 1.0 ng/ml 
TGF- �  2  for 24 h could upregulate CTGF mRNA expres-
sion by 2.8  8  0.7-fold ( fig. 6 a), while exposure of astro-
cytes to 200  �  M  H 2 O 2  for 1 h induced a CTGF increase 
by 2.7  8  0.2-fold compared to untreated control cells 
( fig.  6 b). Pretreatment of astrocytes with 200  �  M  LA 
could markedly reduce TGF- �  2 -induced CTGF expres-
sion to 0.9  8  0.4-fold ( fig.  6 a), while H 2 O 2 -mediated 
CTGF upregulation was most effectively blocked by pre-
treatment with 200  �  M  LA (1.1  8  0.2-fold) ( fig. 6 b).

  Discussion 

 There is a growing body of evidence suggesting that 
glaucomatous optic neuropathy is not only attributed to 
elevated intraocular pressure but also to several concom-
itant factors such as TGF- �  2   [16–19]  and oxidative stress 
 [20–22] . Reactive astrocytes of the ONH are involved in 
cellular responses to both TGF- �  2  and oxidative stress 
 [21, 26, 45] . In cultured human ONH astrocytes, TGF- �  2  
expression could also be induced by oxidative stress  [46] . 
Immunohistological investigations revealed increased 
levels of TGF- �  2  in the ONH of glaucomatous patients 
 [45] . Furthermore, oxidative stress exposure increased 
antioxidant defense mechanisms of ONH astrocytes of 
glaucomatous donor eyes as compared to normal non-
glaucomatous ONH astrocytes  [21, 27] . Oxidative stress 
is a resultant of ROS overproduction, which, among oth-
er factors, contributes to optic neurodegeneration  [22, 
47] . Similarly, TGF- �  2  is also a potent inducer of ROS 
generation as demonstrated in a number of different in 
vitro studies  [23, 48, 49] . In our first experiments, we de-
tected elevated lipid peroxidation estimated by the loss of 
PNA fluorescence, a known marker of late oxidative 
stress  [44] , after treatment of cultured human ONH 
 astrocytes with TGF- �  2  or hydrogen peroxide (H 2 O 2 ). 
These observations suggest that both TGF- �  2  and H 2 O 2  
are capable of producing ROS in our in vitro model.

  As mentioned before, the exposure of the optic nerve 
to increased ROS levels plays an important role in glau-
comatous optic neuropathy  [22, 24, 26, 27] . Therefore, we 
hypothesized that both TGF- �  2  and H 2 O 2  may convey 
their involvement in the pathogenesis of primary open-
angle glaucoma, at least in part, via ROS formation. It is 
known that increased ROS production can affect gene 
regulations including those of Hsps, ECM components 
and ECM-modulating proteins  [50] . Thus, in our next ex-
periments, we examined whether TGF- �  2 - and H 2 O 2 -in-
duced gene expressions in reactive human ONH astro-
cytes can be minimized by the use of antioxidants. 

  In the ONH, reactive astrocytes play a critical role in 
the defense system against ROS  [50] . One defense mecha-
nism of astrocytes to protect neurons is the generation of 
Hsps in response to oxidative stress  [50] . Two factors, 
which have the ability to produce Hsps in reactive astro-
cytes, are TGF- �  2  and H 2 O 2   [51, 52] . We could demon-
strate that exposure to TGF- �  2  and H 2 O 2  could increase 
the expression of the small stress-sensitive Hsps  � B-crys-
tallin and Hsp27. Furthermore, in our experiments, both 
TGF- �  2 - and H 2 O 2 -induced upregulations of  � B-crys-
tallin and Hsp27 expression in cultured human ONH as-
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