84 research outputs found

    Safety and feasibility of sublingual microcirculation assessment in the emergency department for civilian and military patients with traumatic haemorrhagic shock: a prospective cohort study

    Get PDF
    OBJECTIVES: Sublingual microcirculatory monitoring for traumatic haemorrhagic shock (THS) may predict clinical outcomes better than traditional blood pressure and cardiac output, but is not usually performed until the patient reaches the intensive care unit (ICU), missing earlier data of potential importance. This pilot study assessed for the first time the feasibility and safety of sublingual video-microscopy for THS in the emergency department (ED), and whether it yields useable data for analysis. SETTING: A safety and feasibility assessment was undertaken as part of the prospective observational MICROSHOCK study; sublingual video-microscopy was performed at the UK-led Role 3 medical facility at Camp Bastion, Afghanistan, and in the ED in 3 UK Major Trauma Centres. PARTICIPANTS: There were 15 casualties (2 military, 13 civilian) who presented with traumatic haemorrhagic shock with a median injury severity score of 26. The median age was 41; the majority (n=12) were male. The most common injury mechanism was road traffic accident. PRIMARY AND SECONDARY OUTCOME MEASURES: Safety and feasibility were the primary outcomes, as measured by lack of adverse events or clinical interruptions, and successful acquisition and storage of data. The secondary outcome was the quality of acquired video clips according to validated criteria, in order to determine whether useful data could be obtained in this emergency context. RESULTS: Video-microscopy was successfully performed and stored for analysis for all patients, yielding 161 video clips. There were no adverse events or episodes where clinical management was affected or interrupted. There were 104 (64.6%) video clips from 14 patients of sufficient quality for analysis. CONCLUSIONS: Early sublingual microcirculatory monitoring in the ED for patients with THS is safe and feasible, even in a deployed military setting, and yields videos of satisfactory quality in a high proportion of cases. Further investigations of early microcirculatory behaviour in this context are warranted. TRIAL REGISTRATION NUMBER: NCT02111109

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Measurement of the tt̄W and tt̄Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√ = 8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−¹ collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt̄W and tt̄Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯Wtt¯W (tt̄Z) production. The measured cross sections are σtt̄W = 369 + 100−91 fb and σtt̄Z = 176 + 58−52 fb. The background-only hypothesis with neither tt̄W nor tt̄Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt̄W and tt̄Z processes
    corecore