77 research outputs found

    The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model

    Full text link
    The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution

    Observations of Radiation Belt Losses Due to Cyclotron Wave-Particle Interactions

    Get PDF
    Electron loss to the atmosphere plays a critical role in driving dynamics of the Earths Van Allen radiation belts and slot region. This is a review of atmospheric loss of radiation belt electrons caused by plasma wave scattering via Doppler-shifted cyclotron resonance. In particular, the focus is on observational signatures of electron loss, which include direct measurements of precipitating electrons, measured properties of waves that drive precipitation, and variations in the trapped population resulting from loss. We discuss wave and precipitation measurements from recent missions, including simultaneous multi-payload observations, which have provided new insight into the dynamic nature of the radiation belts

    Development and evolution of dentition pattern and tooth order in the Skates and Rays (Batoidea; Chondrichthyes)

    Get PDF
    Shark and ray (elasmobranch) dentitions are well known for their multiple generations of teeth, with isolated teeth being common in the fossil record. However, how the diverse dentitions characteristic of elasmobranchs form is still poorly understood. Data on the development and maintenance of the dental patterning in this major vertebrate group will allow comparisons to other morphologically diverse taxa, including the bony fishes, in order to identify shared pattern characters for the vertebrate dentition as a whole. Data is especially lacking from the Batoidea (skates and rays), hence our objective is to compile data on embryonic and adult batoid tooth development contributing to ordering of the dentition, from cleared and stained specimens and micro-CT scans, with 3D rendered models. We selected species (adult and embryonic) spanning phylogenetically significant batoid clades, such that our observations may raise questions about relationships within the batoids, particularly with respect to current molecular-based analyses. We include developmental data from embryos of recent model organisms Leucoraja erinacea and Raja clavata to evaluate the earliest establishment of the dentition. Characters of the batoid dentition investigated include alternate addition of teeth as offset successional tooth rows (versus single separate files), presence of a symphyseal initiator region (symphyseal tooth present, or absent, but with two parasymphyseal teeth) and a restriction to tooth addition along each jaw reducing the number of tooth families, relative to addition of successor teeth within each family. Our ultimate aim is to understand the shared characters of the batoids, and whether or not these dental characters are shared more broadly within elasmobranchs, by comparing these to dentitions in shark outgroups. These developmental morphological analyses will provide a solid basis to better understand dental evolution in these important vertebrate groups as well as the general plesiomorphic vertebrate dental condition

    Post-Franco Theatre

    Get PDF
    In the multiple realms and layers that comprise the contemporary Spanish theatrical landscape, “crisis” would seem to be the word that most often lingers in the air, as though it were a common mantra, ready to roll off the tongue of so many theatre professionals with such enormous ease, and even enthusiasm, that one is prompted to wonder whether it might indeed be a miracle that the contemporary technological revolution – coupled with perpetual quandaries concerning public and private funding for the arts – had not by now brought an end to the evolution of the oldest of live arts, or, at the very least, an end to drama as we know it

    Onchocerciasis (river blindness) – more than a century of research and control

    Get PDF
    This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20–30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections

    Early acanthodians from the Lower Silurian of Asia

    No full text

    CPW.9A DG dentition_01

    No full text
    CT-scan, Natural History Museum of the placoderm CPW.9A dentition. vol/vgi file may be opened in Amira or the program Drishti (http://anusf.anu.edu.au/Vizlab/drishti/)

    Smith et al. Supplementary information

    No full text
    This is a folder that includes two files: Smith_et_al._Supplementary_Information (doc) and Smith_et_al._Supplementary_Information (pdf). Description of CPW.9A and Fig. 1: Acanthothoraci (CPW.9A); ‘Placodermi’, Prince of Wales Island, Canada (Early Devonian, Lochkovian): A, dorsal view of PrM plate, showing stellate tubercles (tub.st), also flattened ones on ventral ‘lip’ (asterisk) and bifurcating ethmoidal commissure (ec). B, ventral view of PrM plate, ventral lip, with in situ articulated anterior supragnathal (ASG) dental plates, separated by junction between them and ventral lip of PrM; perichondral bone of ethmoid region of the braincase (eth). Scale bar represents 0.50 cm for both images
    corecore