11 research outputs found

    A role for the ventral hippocampal endocannabinoid system in fear-conditioned analgesia and fear responding in the presence of nociceptive tone in rats

    Get PDF
    The endogenous cannabinoid (endocannabinoid) system plays an important role in fear-conditioned analgesia (FCA) and expression and extinction of conditioned fear. The hippocampus has an established role in both pain and conditioned fear and is a substrate for endocannabinoid activity. This study aimed to investigate the role of the endocannabinoid system in the ventral hippocampus (vHip) in FCA and in fear responding in the presence of nociceptive tone. Fear-conditioned rats displayed significantly increased freezing and 22-kHz ultrasonic vocalisation and a reduction in formalin-evoked nociceptive behaviour (ie, FCA) upon re-exposure to a context previously paired with footshock. Tissue levels of the endocannabinoids, anandamide, and 2-arachidonoylglycerol, as well as the fatty acid amide, palmitoylethanolamide, were significantly higher in the vHip of fear-conditioned rats compared with non-fear-conditioned controls. URB597 (inhibitor of fatty acid amide hydrolase [FAAH]), administered bilaterally into the vHip, significantly enhanced FCA during the entire trial and increased fear responding in formalin-treated rats early in the trial. The URB597-induced enhancement of FCA was blocked by intra-vHip administration of the cannabinoid(1) (CB(1)) receptor antagonist/inverse agonist rimonabant. Intra-vHip rimonabant alone had no effect on the expression of FCA, and URB597 did not significantly alter formalin-evoked nociceptive behaviour in non-fear-conditioned rats. These data suggest an important role for the endocannabinoid system in the vHip in FCA, whereby levels of 2-arachidonoylglycerol and the FAAH substrates palmitoylethanolamide and anandamide are increased in rats expressing FCA, and pharmacological inhibition of FAAH in the vHip enhances this form of endogenous analgesia via a CB(1) receptor-dependent mechanism.peer-reviewe

    iPlasticity: Induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants

    No full text

    Endocannabinoid-mediated modulation of stress responses: Physiological and pathophysiological significance

    No full text

    References

    No full text
    corecore