591 research outputs found

    Abnormal expression of cortical cell cycle regulators underlying anxiety and depressive-like behavior in mice exposed to chronic stress

    Get PDF
    BackgroundThe cell cycle is a critical mechanism for proper cellular growth, development and viability. The p16INK4a and p21Waf1/Cip1 are important regulators of the cell cycle progression in response to internal and external stimuli (e.g., stress). Accumulating evidence indicates that the prefrontal cortex (PFC) is particularly vulnerable to stress, where stress induces, among others, molecular and morphological alterations, reflecting behavioral changes. Here, we investigated if the p16INK4a and p21Waf1/Cip1 expression are associated with behavioral outcomes.MethodsPrefrontal cortex mRNA and protein levels of p16INK4A and p21Waf1/Cip1 of mice (six independent groups of C57BL/6J, eight mice/group, 50% female) exposed from 0 to 35 days of chronic restraint stress (CRS) were quantified by qPCR and Western Blot, respectively. Correlation analyses were used to investigate the associations between cyclin-dependent kinase inhibitors (CKIs) expression and anxiety- and depression-like behaviors.ResultsOur results showed that the PFC activated the cell cycle regulation pathways mediated by both CKIs p16INK4A and p21Waf1/Cip1 in mice exposed to CRS, with overall decreased mRNA expression and increased protein expression. Moreover, correlation analysis revealed that mRNA and protein levels are statistically significant correlated with anxiety and depressive-like behavior showing a greater effect in males than females.ConclusionOur present study extends the existing literature providing evidence that PFC cells respond to chronic stress exposure by overexpressing CKIs. Furthermore, our findings indicated that abnormal expression of p16INK4A and p21Waf1/Cip1 may significantly contribute to non-adaptive behavioral responses

    Co-expression and impact of prostate specific membrane antigen and prostate specific antigen in prostatic pathologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study was undertaken to relate the co-expression of prostate-associated antigens, PSMA and PSA, with the degree of vascularization in normal and pathologic (hyperplasia and cancer) prostate tissues to elucidate their possible role in tumor progression.</p> <p>Methods</p> <p>The study was carried out in 6 normal, 44 benign prostatic hyperplastic and 39 cancerous human prostates. Immunohistochemical analysis were performed using the monoclonal antibody CD34 to determine the angiogenic activity, and the monoclonal antibodies 3E6 and ER-PR8 to assess PSMA and PSA expression, respectively.</p> <p>Results</p> <p>In our study we found that in normal prostate tissue, PSMA and PSA were equally expressed (3.7 ± 0.18 and 3.07 ± 0.11). A significant difference in their expression was see in hyperplastic and neoplastic prostates tissues (16.14 ± 0.17 and 30.72 ± 0.85, respectively) for PSMA and (34.39 ± 0.53 and 17.85 ± 1.21, respectively) for PSA. Study of prostate tumor profiles showed that the profile (PSA+, PSMA-) expression levels decreased between normal prostate, benign prostatic tissue and primary prostate cancer. In the other hand, the profile (PSA-, PSMA+) expression levels increased from normal to prostate tumor tissues. PSMA overexpression was associated with high intratumoral angiogenesis activity. By contrast, high PSA expression was associated with low angiogenesis activity.</p> <p>Conclusion</p> <p>These data suggest that these markers are regulated differentially and the difference in their expression showed a correlation with malignant transformation. With regard to the duality PSMA-PSA, this implies the significance of their investigation together in normal and pathologic prostate tissues.</p

    Depletion of the neural precursor cell pool by glucocorticoids

    Get PDF
    OBJECTIVE: Glucocorticoids (GCs) are indicated for a number of conditions in obstetrics and perinatal medicine; however, the neurodevelopmental and long-term neurological consequences of early-life GC exposure are still largely unknown. Preclinical studies have demonstrated that GCs have a major influence on hippocampal cell turnover by inhibiting neurogenesis and stimulating apoptosis of mature neurons. Here we examined the fate of the limited pool of neural progenitor cells (NPCs) after GC administration during neonatal development; the impact of this treatment on hippocampal structure was also studied. METHODS: Phenotype-specific genetic and antigenic markers were used to identify cultured NPCs at various developmental stages; the survival of these cells was monitored after exposure to the synthetic glucocorticoid dexamethasone (DEX). In addition, the effects of neonatal DEX treatment on the neurogenic potential of the rat hippocampus were examined by monitoring the incorporation of bromodeoxyuridine and expression of Ki67 antigen at various postnatal ages. RESULTS: Multipotent nestin-expressing NPCs and Talpha1-tubulin-expressing immature neurons succumb to GC-induced apoptosis in primary hippocampal cultures. Neonatal GC treatment results in marked apoptosis among the proliferating population of cells in the dentate gyrus, depletes the NPC pool, and leads to significant and sustained reductions in the volume of the dentate gyrus. INTERPRETATION: Both NPCs and immature neurons in the hippocampus are sensitive to the proapoptotic actions of GCs. Depletion of the limited NPC pool during early life retards hippocampal growth, thus allowing predictions about the potential neurological and psychiatric consequences of neonatal GC exposure.S. Yu, Y Wu, and J Lu were supported by fellowships from the Max Planck Society. This study was partly supported by grants from the German Academic Exchange Service (to O.F.X.A. and N.S.) and the Portuguese Rectors' Conference, a grant from Gulbenkian Foundation (JG 0495 to N.S.), and an Integrated Project grant from the European Commission (Contract No. LSHM-CT-2005-01852 to O.F.X.A.)

    Cell genesis and dendritic plasticity: a neuroplastic pas de deux in the onset and remission from depression

    Get PDF
    Brain neuroplasticity is increasingly considered to be an important component of both the pathology and treatment of depressive spectrum disorders. Recent studies shed light on the relevance of hippocampal cell genesis and cortico-limbic dendritic plasticity for the development and remission from depressive-like behavior. However, the neurobiological significance of neuroplastic phenomena in this context is still controversial. Here we summarize recent developments in this topic and propose an integrative interpretation of data gathered so far

    Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress

    No full text
    Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology

    Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist

    Get PDF
    In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30?min and 24?h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.Acknowledgements: M.G.-S. was recipient of a contract from the Sistema Nacional de Garantía Juvenil co-funded by the European Social Fund. We also thank Novartis for the generous gift of NVP-AAM077. This work was supported by the Instituto de Salud Carlos III, Subdirección General del Evaluación y Fomento de la Investigación (FIS Grants PI13/00038 and PI16/00217) that were co-funded by the European Regional Development Fund (‘A way to build Europe’). Funding from the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III is also acknowledged

    Vardenafil Increases Cell Proliferation in the Dentate Gyrus through Enhancement of Serotonin Expression in the Rat Dorsal Raphe

    Get PDF
    This study was conducted to evaluate the effects of vardenafil (Levitra), a phosphodiesterase-5 (PDE-5) inhibitor, on cell proliferation in the hippocampal dentate gyrus and on 5-hyroxytryptamine (5-HT, serotonin) synthesis and tryptophan hydroxylase (TPH) expression in the rat dorsal raphe nucleus. Male Sprague-Dawley rats were divided into 6 groups (n=5 in each group): a control group, a 0.5 mg/kg-1 day vardenafil-treated group, a 1 mg/kg-1 day vardenafil-treated group, a 2 mg/kg-1 day vardenafil-treated group, a 1 mg/kg-3 day vardenafil-treated group, and a 1 mg/kg-7 day vardenafil-treated group. 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry was then performed to evaluate cell proliferation in the dentate gyrus. In addition, 5-HT and TPH immunohistochemistry was conducted to evaluate serotonin expression in the dorsal raphe. The results revealed that treatment with vardenafil increased cell proliferation in the dentate gyrus and enhanced 5-HT synthesis and TPH expression in the dorsal raphe in a dose- and duration-dependent manner. The findings demonstrate that the increasing effect of vardenafil on cell proliferation is closely associated with the enhancing effect of vardenafil on serotonin expression under normal conditions

    Glucocorticoid Regulation of Astrocytic Fate and Function

    Get PDF
    Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus

    Axonal Control of the Adult Neural Stem Cell Niche

    Get PDF
    SUMMARYThe ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C
    corecore