318 research outputs found

    Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient

    Get PDF
    "Rotating RAdio Transients" (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.Comment: 5 pages, 2 b/w figures, 1 color figure. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres

    A 350-MHz GBT Survey of 50 Faint Fermi Gamma-ray Sources for Radio Millisecond Pulsars

    Full text link
    We have used the Green Bank Telescope at 350MHz to search 50 faint, unidentified Fermi Gamma-ray sources for radio pulsations. So far, these searches have resulted in the discovery of 10 millisecond pulsars, which are plausible counterparts to these unidentified Fermi sources. Here we briefly describe this survey and the characteristics of the newly discovered MSPs.Comment: 4 pages, 2 figures, to appear in AIP Conference Proceedings of Pulsar Conference 2010 "Radio Pulsars: a key to unlock the secrets of the Universe", Sardinia, October 201

    PSR J1119-6127 and the X-ray Emission from High Magnetic Field Radio Pulsars

    Get PDF
    The existence of radio pulsars having inferred magnetic elds in the magnetar regime suggests that possible transition objects could be found in the radio pulsar population. The discovery of such an object would contribute greatly to our understanding of neutron star physics. Here we report on unusual X-ray emission detected from the radio pulsar PSR J1119-6127 using XMM-Newton. The pulsar has a characteristic age of 1,700 yrs and inferred surface dipole magnetic eld strength of 4.1x10^13 G. In the 0.5-2.0 keV range, the emission shows a single, narrow pulse with an unusually high pulsed fraction of ~70%. No pulsations are detected in the 2.0-10.0 keV range, where we derive an upper limit at the 99% level for the pulsed fraction of 28%. The pulsed emission is well described by a thermal blackbody model with a high temperature of 2.4x10^6 K. While no unambiguous signature of magnetar-like emission has been found in high-magnetic-eld radio pulsars, the X-ray characteristics of PSR J1119-6127 require alternate models from those of conventional thermal emission from neutron stars. In addition, PSR J1119-6127 is now the radio pulsar with the smallest characteristic age from which thermal X-ray emission has been detected

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    • …
    corecore