44 research outputs found

    Characterization of latex allergenic components by capillary zone electrophoresis and N-terminal sequence analysis

    Get PDF
    In a previous study, protein components purified from latex gloves that elicited allergenic reactions were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and yielded apparent molecular weights of 14, 22, 30, 34, 46, and 58 kD, These allergenic components were isolated for further characterization by capillary zone electrophoresis and N-terminal amino acid sequence analysis. These components all migrated at approximately 25 and 35 min on capillary zone electrophoresis, Diode array spectral analysis detected indistinguishable characteristics between these two protein peaks, In addition, complex formation of these components with patients' immunoglobulin was demonstrated by capillary zone electrophoresis. Analysis of components separated by SDS-PAGE on a polyvinylidene difluoride membrane showed that the first 13 residues were identical to the sequence of hevein, Based on the criteria of charge-to-mass ratio and N-terminal amino acid sequence, our results suggest that these components of latex proteins are similar in the primary structure

    R+R2R + R^2 Gravity as R+R + Backreaction

    Full text link
    Quadratic theory of gravity is a complicated constraint system. We investigate some consequences of treating quadratic terms perturbatively (higher derivative version of backreaction effects). This approach is shown to overcome some well known problems associated with higher derivative theories, i.e., the physical gravitational degree of freedom remains unchanged from those of Einstein gravity. Using such an interpretation of R+βR2R + \beta R^2 gravity, we investigate a classical and Wheeler DeWitt evolution of R+βR2R + \beta R^2 gravity for a particular sign of β\beta, corresponding to non- tachyon case. Matter is described by a phenomenological ρa(t)n\rho \propto a(t)^{-n}. It is concluded that both the Friedmann potential U(a)U(a) (a˙2+2U(a)=0 {\dot a}^2 + 2U(a) = 0 ) and the Wheeler DeWitt potential W(a)W(a) ([2a2+2W(a)]ψ(a)=0\left[-{\partial^2\over \partial a^2} + 2W(a)\right]\psi (a) =0 ) develop repulsive barriers near a0a\approx 0 for n>4n>4 (i.e., p>13ρ p > {1\over 3}\rho ). The interpretations is clear. Repulsive barrier in U(a)U(a) implies that a contracting FRW universe (k>0,k=0,k<0k>0, k=0, k<0) will bounce to an expansion phase without a total gravitational collapse. Repulsive barrier in W(a)W(a) means that a0a \approx 0 is a classically forbidden region. Therefore, probability of finding a universe with the big bang singularity (a=0a=0 ) is exponentially suppressed.Comment: Accepted for publication in Phy. Rev. D.,18 pages, 6 figures, Latex fil

    Energy Conditions in f(G)f(G) Modified Gravity with Non-minimal Coupling to Matter

    Full text link
    In this paper we study a model of modified gravity with non-minimal coupling between a general function of the Gauss-Bonnet invariant, f(G)f(G), and matter Lagrangian from the point of view of the energy conditions. Such model has been introduced in Ref. [21] for description of early inflation and late-time cosmic acceleration. We present the suitable energy conditions for the above mentioned model and then, we use the estimated values of the Hubble, deceleration and jerk parameters to apply the obtained energy conditions to the specific class of modified Gauss-Bonnet models.Comment: 12 pages, no figur, Accepted for publication in Astrophysics and Space Scienc

    Modified f(G) gravity models with curvature-matter coupling

    Full text link
    A modified f(G) gravity model with coupling between matter and geometry is proposed, which is described by the product of the Lagrange density of the matter and an arbitrary function of the Gauss-Bonnet term. The field equations and the equations of motion corresponding to this model show the non-conservation of the energy-momentum tensor, the presence of an extra-force acting on test particles and the non-geodesic motion. Moreover, the energy conditions and the stability criterion at de Sitter point in the modified f(G) gravity models with curvature-matter coupling are derived, which can degenerate to the well-known energy conditions in general relativity. Furthermore, in order to get some insight on the meaning of these energy conditions, we apply them to the specific models of f(G) gravity and the corresponding constraints on the models are given. In addition, the conditions and the candidate for late-time cosmic accelerated expansion in the modified f(G) gravity are studied by means of conditions of power-law expansion and the equation of state of matter less than -1/ 3 .Comment: 13 pages, 4 figure

    From the Big Bang Theory to the Theory of a Stationary Universe

    Get PDF
    We consider chaotic inflation in the theories with the effective potentials phi^n and e^{\alpha\phi}. In such theories inflationary domains containing sufficiently large and homogeneous scalar field \phi permanently produce new inflationary domains of a similar type. We show that under certain conditions this process of the self-reproduction of the Universe can be described by a stationary distribution of probability, which means that the fraction of the physical volume of the Universe in a state with given properties (with given values of fields, with a given density of matter, etc.) does not depend on time, both at the stage of inflation and after it. This represents a strong deviation of inflationary cosmology from the standard Big Bang paradigm. We compare our approach with other approaches to quantum cosmology, and illustrate some of the general conclusions mentioned above with the results of a computer simulation of stochastic processes in the inflationary Universe.Comment: No changes to the file, but original figures are included. They substantially help to understand this paper, as well as eternal inflation in general, and what is now called the "multiverse" and the "string theory landscape." High quality figures can be found at http://www.stanford.edu/~alinde/LLMbigfigs

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    The Dynamics of Brane-World Cosmological Models

    Full text link
    Brane-world cosmology is motivated by recent developments in string/M-theory and offers a new perspective on the hierarchy problem. In the brane-world scenario, our Universe is a four-dimensional subspace or {\em brane} embedded in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are confined to the brane while the gravitational field can also propagate in the bulk, leading to modifications of Einstein's theory of general relativity at high energies. In particular, the Randall-Sundrum-type models are self-consistent and simple and allow for an investigation of the essential non-linear gravitational dynamics. The governing field equations induced on the brane differ from the general relativistic equations in that there are nonlocal effects from the free gravitational field in the bulk, transmitted via the projection of the bulk Weyl tensor, and the local quadratic energy-momentum corrections, which are significant in the high-energy regime close to the initial singularity. In this review we discuss the asymptotic dynamical evolution of spatially homogeneous brane-world cosmological models containing both a perfect fluid and a scalar field close to the initial singularity. Using dynamical systems techniques it is found that, for models with a physically relevant equation of state, an isotropic singularity is a past-attractor in all orthogonal spatially homogeneous models (including Bianchi type IX models). In addition, we describe the dynamics in a class of inhomogeneous brane-world models, and show that these models also have an isotropic initial singularity. These results provide support for the conjecture that typically the initial cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ

    Memory requirements for balanced computer architectures

    No full text

    Evaluating the potential of Re-188-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment

    No full text
    Introduction: Radioimmunotherapy, which utilizes monoclonal antibodies and therapeutic radioisotopes against antigen-expressing tumor tissues, is an attractive therapeutic approach for cancer therapy. Trastuzumab (Herceptin) is a humanized anti-HER-2/neu monoclonal antibody for breast cancer treatment. In this paper, we introduce a new radioimmunoagent, Re-188-trastuzumab, via a bifunctional ligand, succinimidyl 3,6-diaza-5-oxo-3-[2-((triphenymethyl)thio)ethyl]-8-[(triphenylmethyl)thio]octanoate (SOCTA), and evaluate its potential to be a therapeutic radiopharmaceutical for breast cancer treatment. Methods: Equimolar amounts of SOCTA and trastuzumab were selected to react, and the conjugation ratio of SOCTA-trastuzumab was evaluated by the MALDI-TOF method. The immunoreactivity of SOCTA-trastuzumab was compared with nonconjugated trastuzumab in HER-2/neu overexpressing human breast cancer cell BT-474. Biodistribution experiment and microSPECT/CT images of Re-188-SOCTA-trastuzumab being administered intravenously to SCID mice hearing xenografted BT-474 breast cancer were investigated to evaluate the tumor-targeting capability. Results: The covalent attachment of SOCTA to trastuzumab (at 1: 1 molar ratio) resulted in the averaged conjugation ratio of 0.27 +/- 0.06 (n=3). The complex Could easily be labeled with Re-188 and achieve 95% radiochemical purity (RCP) after 1 h of reaction at room temperature. The in vitro stability study also revealed that the RCP of Re-188-SOCTA-trastuzumab was at a value of more than 85% after 48 h Of incubation with human serum. The immunoreactivity evaluation showed that SOCTA-trastuzumab and nonconjugated trastuzumab had similar binding capacity (B,) to HER-2/neu receptor in BT-474 cells. The animal experiments showed that Re-188-SOCTA-trastuzumab accumulated more intensively in the tumor site as compared to normal tissue. Conclusion: We suggest that Re-188-SOCTA-trastuzumab could be a potential candidate for radioimmunotherapy. (C) 2009 Elsevier Inc. All rights reserved
    corecore