1,470 research outputs found
Physico-chemical and phytoplanktonic characteristics of river Tons at Dehradun (Uttarakhand), India
The physico-chemical and phytoplankton characteristics of the Tons River were analyzed during August 2011-July 2012. The samples were collected from Garhi Cant (Site 1) and Tapkeshwar temple (Site 2) at Dehradun. The results showed that temperature, velocity, DO, nitrate and phosphate affected the phytoplanktonic diversity of river Tons. Thirty five genera of phytoplankton belonging to three families of Chlorophyceae, Bacillariophyceae and Myxophyceae were also identified in the river water. The family Bacillariophyceae was dominating the river with much abundance throughout the study period. Bacillariophyceae was recorded with the maximum of 222.25±90.84 Unit/L at sampling site 1 and 239.08±125.41 Unit/L at sampling site 2. The greater number of individuals was in family Bacillariophyceae (239.08±125.41 Unit/L) followed by Chlorophyceae (183.75±112.50 Unit/L) and Myxophyceae(40.91±36.16 Unit/L) during the study period. Both the number of genera and number of individuals belonging to each genera was maximum in case of family Bacillariophyceae followed by Chlorophyceae and Myxophyceae. The present study revealed that the water quality of river Tons was fairly good for the growth and survival of phytoplankton, and as a result it sustains the higher phytoplankton diversity of Tons river
Almost-Tight Distributed Minimum Cut Algorithms
We study the problem of computing the minimum cut in a weighted distributed
message-passing networks (the CONGEST model). Let be the minimum cut,
be the number of nodes in the network, and be the network diameter. Our
algorithm can compute exactly in time. To the best of our knowledge, this is the first paper that
explicitly studies computing the exact minimum cut in the distributed setting.
Previously, non-trivial sublinear time algorithms for this problem are known
only for unweighted graphs when due to Pritchard and
Thurimella's -time and -time algorithms for
computing -edge-connected and -edge-connected components.
By using the edge sampling technique of Karger's, we can convert this
algorithm into a -approximation -time algorithm for any . This improves
over the previous -approximation -time algorithm and
-approximation -time algorithm of Ghaffari and Kuhn. Due to the lower
bound of by Das Sarma et al. which holds for any
approximation algorithm, this running time is tight up to a factor.
To get the stated running time, we developed an approximation algorithm which
combines the ideas of Thorup's algorithm and Matula's contraction algorithm. It
saves an factor as compared to applying Thorup's tree
packing theorem directly. Then, we combine Kutten and Peleg's tree partitioning
algorithm and Karger's dynamic programming to achieve an efficient distributed
algorithm that finds the minimum cut when we are given a spanning tree that
crosses the minimum cut exactly once
Nucleon mass, sigma term and lattice QCD
We investigate the quark mass dependence of the nucleon mass M_N. An
interpolation of this observable, between a selected set of fully dynamical
two-flavor lattice QCD data and its physical value, is studied using
relativistic baryon chiral perturbation theory up to order p^4. In order to
minimize uncertainties due to lattice discretization and finite volume effects
our numerical analysis takes into account only simulations performed with
lattice spacings a5. We have also restricted ourselves to
data with m_pi<600 MeV and m_sea=m_val. A good interpolation function is found
already at one-loop level and chiral order p^3. We show that the
next-to-leading one-loop corrections are small. From the p^4 numerical analysis
we deduce the nucleon mass in the chiral limit, M_0 approx 0.88 GeV, and the
pion-nucleon sigma term sigma_N= (49 +/- 3) MeV at the physical value of the
pion mass.Comment: 12 pages, 4 figures, revised journal versio
Linear Responses in Time-dependent Hartree-Fock-Bogoliubov Method with Gogny Interaction
A numerical method to integrate the time-dependent Hartree-Fock Bogoliubov
(TDHFB) equations with Gogny interaction is proposed. The feasibility of the
TDHFB code is illustrated by the conservation of the energy, particle numbers,
and center-of-mass in the small amplitude vibrations of oxygen 20. The TDHFB
code is applied to the isoscalar quadrupole and/or isovector dipole vibrations
in the linear (small amplitude) region in oxygen isotopes (masses A = 18,20,22
and 24), titanium isotopes (A = 44,50,52 and 54), neon isotope (A = 26), and
magnesium isotopes (A = 24 and 34). The isoscalar quadrupole and isovector
dipole strength functions are calculated from the expectation values of the
isoscalar quadrupole and isovector dipole moments.Comment: 10 pages, 13 figure
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle
Common Era sea-level budgets along the U.S. Atlantic coast
Sea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0-2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr-1). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between -0.3 and 0.4 mm yr-1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr-1
Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV
Peer reviewe
- …
