70 research outputs found
Recommended from our members
White matter microstructural alterations across four major psychiatric disorders : mega-analysis study in 2937 individuals
Identifying both the commonalities and differences in brain structures among psychiatric disorders is important for understanding the pathophysiology. Recently, the ENIGMA-Schizophrenia DTI Working Group performed a large-scale meta-analysis and reported widespread white matter microstructural alterations in schizophrenia; however, no similar cross-disorder study has been carried out to date. Here, we conducted mega-analyses comparing white matter microstructural differences between healthy comparison subjects (HCS; N = 1506) and patients with schizophrenia (N = 696), bipolar disorder (N = 211), autism spectrum disorder (N = 126), or major depressive disorder (N = 398; total N = 2937 from 12 sites). In comparison with HCS, we found that schizophrenia, bipolar disorder, and autism spectrum disorder share similar white matter microstructural differences in the body of the corpus callosum; schizophrenia and bipolar disorder featured comparable changes in the limbic system, such as the fornix and cingulum. By comparison, alterations in tracts connecting neocortical areas, such as the uncinate fasciculus, were observed only in schizophrenia. No significant difference was found in major depressive disorder. In a direct comparison between schizophrenia and bipolar disorder, there were no significant differences. Significant differences between schizophrenia/bipolar disorder and major depressive disorder were found in the limbic system, which were similar to the differences in schizophrenia and bipolar disorder relative to HCS. While schizophrenia and bipolar disorder may have similar pathological characteristics, the biological characteristics of major depressive disorder may be close to those of HCS. Our findings provide insights into nosology and encourage further investigations of shared and unique pathophysiology of psychiatric disorders
Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria)
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 670–679, doi:10.1038/ismej.2011.128.Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here we applied a single cell approach to quantify genome and ribosome content of akinetes and vegetative cells in Aphanizomenon ovalisporum (Cyanobacteria). Vegetative cells of A. ovalisporum were naturally polyploid and contained on average 8 genome copies per cell. However, the chromosomal content of akinetes increased up to 450 copies, with an average value of 119 genome copies per akinete, 15 fold higher that in vegetative cells. Based on fluorescence in situ hybridization with a probe targeting 16S rRNA and detection with confocal laser scanning microscopy we conclude that ribosomes accumulated in akinetes to a higher level than that found in vegetative cells. We further present evidence that this massive accumulation of nucleic acids in akinetes is likely supported by phosphate supplied from inorganic polyphosphate bodies that were abundantly present in vegetative cells, but notably absent from akinetes. These results are interpreted in the context of cellular investments for proliferation following long term dormancy, as the high nucleic acid content would provide the basis for extended survival, rapid resumption of metabolic activity and cell division upon germination.Supported by the Gruss Lipper Foundation research award (AS). This study was part of the Joint German-Israeli-Project (FKZ 02WT0985, WR803) funded by the German Ministry of Research and Technology (BMBF) and Israel Ministry of Science and Technology (MOST)
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Gateways to the FANTOM5 promoter level mammalian expression atlas
The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0560-6) contains supplementary material, which is available to authorized users
Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
Diagnostic delay in psychogenic seizures and the association with anti-seizure medication trials.
PurposeThe average delay from first seizure to diagnosis of psychogenic non-epileptic seizures (PNES) is over 7 years. The reason for this delay is not well understood. We hypothesized that a perceived decrease in seizure frequency after starting an anti-seizure medication (ASM) may contribute to longer delays, but the frequency of such a response has not been well established.MethodsTime from onset to diagnosis, medication history and associated seizure frequency was acquired from the medical records of 297 consecutive patients with PNES diagnosed using video-electroencephalographic monitoring. Exponential regression was used to model the effect of medication trials and response on diagnostic delay.ResultsMean diagnostic delay was 8.4 years (min 1 day, max 52 years). The robust average diagnostic delay was 2.8 years (95% CI: 2.2-3.5 years) based on an exponential model as 10 to the mean of log10 delay. Each ASM trial increased the robust average delay exponentially by at least one third of a year (Wald t=3.6, p=0.004). Response to ASM trials did not significantly change diagnostic delay (Wald t=-0.9, p=0.38).ConclusionAlthough a response to ASMs was observed commonly in these patients with PNES, the presence of a response was not associated with longer time until definitive diagnosis. Instead, the number of ASMs tried was associated with a longer delay until diagnosis, suggesting that ASM trials were continued despite lack of response. These data support the guideline that patients with seizures should be referred to epilepsy care centers after failure of two medication trials
Recommended from our members
Diagnostic delay in psychogenic seizures and the association with anti-seizure medication trials.
PurposeThe average delay from first seizure to diagnosis of psychogenic non-epileptic seizures (PNES) is over 7 years. The reason for this delay is not well understood. We hypothesized that a perceived decrease in seizure frequency after starting an anti-seizure medication (ASM) may contribute to longer delays, but the frequency of such a response has not been well established.MethodsTime from onset to diagnosis, medication history and associated seizure frequency was acquired from the medical records of 297 consecutive patients with PNES diagnosed using video-electroencephalographic monitoring. Exponential regression was used to model the effect of medication trials and response on diagnostic delay.ResultsMean diagnostic delay was 8.4 years (min 1 day, max 52 years). The robust average diagnostic delay was 2.8 years (95% CI: 2.2-3.5 years) based on an exponential model as 10 to the mean of log10 delay. Each ASM trial increased the robust average delay exponentially by at least one third of a year (Wald t=3.6, p=0.004). Response to ASM trials did not significantly change diagnostic delay (Wald t=-0.9, p=0.38).ConclusionAlthough a response to ASMs was observed commonly in these patients with PNES, the presence of a response was not associated with longer time until definitive diagnosis. Instead, the number of ASMs tried was associated with a longer delay until diagnosis, suggesting that ASM trials were continued despite lack of response. These data support the guideline that patients with seizures should be referred to epilepsy care centers after failure of two medication trials
Recommended from our members
Diagnostic implications of review-of-systems questionnaires to differentiate epileptic seizures from psychogenic seizures.
ObjectiveEarly and accurate diagnosis of patients with psychogenic nonepileptic seizures (PNES) leads to appropriate treatment and improves long-term seizure prognosis. However, this is complicated by the need to record seizures to make a definitive diagnosis. Suspicion for PNES can be raised through knowledge that patients with PNES have increased somatic sensitivity and report more positive complaints on review-of-systems questionnaires (RoSQs) than patients with epileptic seizures. If the responses on the RoSQ can differentiate PNES from other seizure types, then these forms could be an early screening tool.MethodsOur dataset included all patients admitted from January 2006 to June 2016 for video-electroencephalography at UCLA. RoSQs prior to May 2015 were acquired through retrospective chart review (n=405), whereas RoSQs from subsequent patients were acquired prospectively (n=190). Controlling for sex and number of comorbidities, we used binomial regression to compare the total number of symptoms and the frequency of specific symptoms between five mutually exclusive groups of patients: epileptic seizures (ES), PNES, physiologic nonepileptic seizure-like events (PSLE), mixed PNES plus ES, and inconclusive monitoring. To determine the diagnostic utility of RoSQs to differentiate PNES only from ES only, we used multivariate logistic regression, controlling for sex and the number of medical comorbidities.ResultsOn average, patients with PNES or mixed PNES and ES reported more than twice as many symptoms than patients with isolated ES or PSLE (p<0.001). The prospective accuracy to differentiate PNES from ES was not significantly higher than naïve assumption that all patients had ES (76% vs 70%, p>0.1).DiscussionThis analysis of RoSQs confirms that patients with PNES with and without comorbid ES report more symptoms on a population level than patients with epilepsy or PSLE. While these differences help describe the population of patients with PNES, the consistency of RoSQ responses was neither accurate nor specific enough to be used solely as an early screening tool for PNES. Our results suggest that the RoSQ may help differentiate PNES from ES only when, based on other information, the pre-test probability of PNES is at least 50%
- …