85 research outputs found

    Evaluation of Precision Ingredient Inclusion on Production Efficiency Responses in Finishing Beef Cattle

    Get PDF
    Two randomized complete block design feedlot experiments were conducted over the course of two years. These experiments were conducted to investigate the effects of 1) evaluate the observed-to-expected ratio for ingredient inclusion using no commodity inclusion assistance technology or using commodity inclusion assistance technology; and 2) evaluate the influence that varying degrees (highly variable at random or 0.454 kg asfed tolerance for each ingredient) of accuracy on ingredient inclusion have on growth performance, carcass traits, efficiency of dietary NE utilization, and ingredient inventory management in finishing beef cattle. Experiment 1 used single source Black Angus heifers (n = 60; initial shrunk BW = 460 ± 26.2 kg). Experiment 2 used single source Charolais-Angus cross steers (n = 128; initial shrunk BW = 505 ± 32.1 kg). Heifers and steers were allotted to 1 of 2 dietary treatments: 1) 0.454 kg as-fed tolerance for each ingredient (CON), or 2) highly variable at random (VAR). In Exp. 1, applying a highly variable at random dietary inclusion did not affect ADG, dry matter intake (DMI), or feed conversion efficiency (P ≥ 0.15). There were no differences (P ³ 0.35) detected between treatments for HCW, dressing percentage, rib eye area, rib fat, USDA marbling score, KPH, yield grade, retail yield, empty body fat, or body weight at 28% estimated EBF. In Exp. 2, highly variable at random dietary inclusion showed an increase in (P £ 0.01) DMI and reduced (P £ 0.02) kg of gain to kg of feed (G:F) for VAR. However, no differences (P = 0.75) were detected between treatments for ADG. In addition, Net Energy for maintenance and gain was decreased (P £ 0.01) in VAR. Carcass characteristics for both treatments showed no treatment effect (P ³ 0.38) on HCW, dressing percentage, rib eye area, rib fat, KPH, Yield Grade, retail yield, empty body fat, or body weight at 28% estimated EBF. A tendency for increased USDA marbling score (P \u3e 0.08) was noted in VAR. Under the conditions of this experiment, randomly altering ingredient proportions negatively affected feed efficiency with no change in carcass characteristics

    Effects of On-Arrival Application of a Modified-Live Respiratory and Clostridia Vaccination on Health, Growth Performance, and Antibody Titers of Newly-Weaned Calves

    Get PDF
    Study Description: Single-sourced, newly weaned steers (n=70; initial body weight (BW)=560±12.9lb) were allotted to 10 pens (n=5 pens/treatment with 7 steers/pen). Steers were blocked by BW in a randomized complete block design of VAC [vaccinated for IBR, BVD 1 and 2, PI3, and BRSV (Bovi-Shield Gold 5, Zoetis, Parsippany, NJ) and clostridial (Ultrabec 7/Somubac, Zoetis) upon arrival] or NOVAC (not vaccinated for IBR, BVD 1 and 2, PI3, and BRSV or clostridial species upon arrival). Steers were individually weighed on d 0 (arrival), 1, 21, and 42 for growth performance measures. Whole blood samples (10 mL) were collected (n=3 steers/pen closest to the pen mean BW) on d 1, 21, and 42 via jugular venipuncture for metabolite and antibody titer responses

    Contribution of Candida biomarkers and DNA detection for the diagnosis of invasive candidiasis in ICU patients with severe abdominal conditions

    Get PDF
    BACKGROUND: To assess the performance of Candida albicans germ tube antibody (CAGTA), (1 → 3)-ß-D-glucan (BDG), mannan antigen (mannan-Ag), anti-mannan antibodies (mannan-Ab), and Candida DNA for diagnosing invasive candidiasis (IC) in ICU patients with severe abdominal conditions (SAC). METHODS: A prospective study of 233 non-neutropenic patients with SAC on ICU admission and expected stay ≥ 7 days. CAGTA (cutoff positivity ≥ 1/160), BDG (≥80, 100 and 200 pg/mL), mannan-Ag (≥60 pg/mL), mannan-Ab (≥10 UA/mL) were measured twice a week, and Candida DNA only in patients treated with systemic antifungals. IC diagnosis required positivities of two biomarkers in a single sample or positivities of any biomarker in two consecutive samples. Patients were classified as neither colonized nor infected (n = 48), Candida spp. colonization (n = 154) (low-grade, n = 130; high-grade, n = 24), and IC (n = 31) (intra-abdominal candidiasis, n = 20; candidemia, n = 11). RESULTS: The combination of CAGTA and BDG positivities in a single sample or at least one of the two biomarkers positive in two consecutive samples showed 90.3 % (95 % CI 74.2–98.0) sensitivity, 42.1 % (95 % CI 35.2–98.8) specificity, and 96.6 % (95 % CI 90.5–98.8) negative predictive value. BDG positivities in two consecutive samples had 76.7 % (95 % CI 57.7–90.1) sensitivity and 57.2 % (95 % CI 49.9–64.3) specificity. Mannan-Ag, mannan-Ab, and Candida DNA individually or combined showed a low discriminating capacity. CONCLUSIONS: Positive Candida albicans germ tube antibody and (1 → 3)-ß-D-glucan in a single blood sample or (1 → 3)-ß-D-glucan positivity in two consecutive blood samples allowed discriminating invasive candidiasis from Candida spp. colonization in critically ill patients with severe abdominal conditions. These findings may be helpful to tailor empirical antifungal therapy in this patient population

    Development of a direct transformation method by GFP screening and in vitro whole plant regeneration of Capsicum frutescens L.

    Get PDF
    Background Capsicum is a genus of important spice crop that belongs to the chili lineage. However, many Capsicum species (family Solanaceae) are known to be recalcitrant to genetic transformation and in vitro regeneration, thus hampering the effort in using Capsicum species for detailed biological investigation. In this study, we have developed an optimized protocol for the direct transformation of Capsicum frutescens L. cv. Hot Lava via a biolistic particle delivery system. In addition, in vitro whole plant regeneration from the hypocotyl explants of C. frutescens was established. Results In this biolistic system study, explant target distance, bombardment helium (He) pressure and the size of microcarrier were the key parameters to be investigated. The optimized parameters based on screening of GFP expression were determined to be 6 cm target distance, 1350 psi of helium pressure and 1.6 μm of gold particle (microcarrier) size. The greatest number of shoots were obtained from hypocotyl as explant using Murashige and Skoog medium supplemented with 5.0 mg/L BAP and 0.1 mg/L NAA. An average of 5 shoots per explant were formed. Out of which, one shoot managed to form root and developed into whole plant. Conclusions We have obtained an optimized protocol for the biolistic transformation of chili and in vitro regeneration of chili plantlets. The establishment of the protocols will provide a platform for molecular breeding and biological studies of the chili plants

    Global transpiration data from sap flow measurements: The SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.This research was supported by the Minis-terio de Economía y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovación (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovación (grant no. CAS16/00207), the Agència de Gestió d’Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institució Catalana de Recerca i Estudis Avançats (Academia Award (JMV)). Víctor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain)

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore