4,394 research outputs found

    Optimal distributed control of a generalized fractional Cahn-Hilliard system

    Get PDF
    In the recent paper `Well-posedness and regularity for a generalized fractional Cahn-Hilliard system' (arXiv:1804.11290) by the same authors, general well-posedness results have been established for a a class of evolutionary systems of two equations having the structure of a viscous Cahn-Hilliard system, in which nonlinearities of double-well type occur. The operators appearing in the system equations are fractional versions in the spectral sense of general linear operators A,B having compact resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. In this work we complement the results given in arXiv:1804.11290 by studying a distributed control problem for this evolutionary system. The main difficulty in the analysis is to establish a rigorous Frechet differentiability result for the associated control-to-state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes it necessary to postulate an additional global boundedness assumption. One typical situation, in which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four. Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assumption, we establish existence and first-order necessary optimality conditions for the optimal control problem in terms of a variational inequality and the associated adjoint state system.Comment: Key words: fractional operators, Cahn-Hilliard systems, optimal control, necessary optimality condition

    On a Cahn-Hilliard type phase field system related to tumor growth

    Full text link
    The paper deals with a phase field system of Cahn-Hilliard type. For positive viscosity coefficients, the authors prove an existence and uniqueness result and study the long time behavior of the solution by assuming the nonlinearities to be rather general. In a more restricted setting, the limit as the viscosity coefficients tend to zero is investigated as well.Comment: Key words: phase field model, tumor growth, viscous Cahn-Hilliard equations, well posedness, long-time behavior, asymptotic analysi

    A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions

    Get PDF
    A boundary control problem for the viscous Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first order necessary conditions for optimality are proved. Key words: Cahn-Hilliard equation, dynamic boundary conditions, phase separation, singular potentials, optimal control, optimality conditions, adjoint state syste

    Well-posedness and regularity for a generalized fractional Cahn-Hilliard system

    Get PDF
    In this paper, we investigate a rather general system of two operator equations that has the structure of a viscous or nonviscous Cahn--Hilliard system in which nonlinearities of double-well type occur. Standard cases like regular or logarithmic potentials, as well as non-differentiable potentials involving indicator functions, are admitted. The operators appearing in the system equations are fractional versions of general linear operators AA and BB, where the latter are densely defined, unbounded, self-adjoint and monotone in a Hilbert space of functions defined in a smooth domain and have compact resolvents. We remark that our definition of the fractional power of operators uses the approach via spectral theory. Typical cases are given by standard second-order elliptic operators (e.g., the Laplacian) with zero Dirichlet or Neumann boundary conditions, but also other cases like fourth-order systems or systems involving the Stokes operator are covered by the theory. We derive general well-posedness and regularity results that extend corresponding results which are known for either the non-fractional Laplacian with zero Neumann boundary condition or the fractional Laplacian with zero Dirichlet condition. It turns out that the first eigenvalue λ1\lambda_1 of AA plays an important und not entirely obvious role: if λ1\lambda_1 is positive, then the operators A\,A\, and B\,B\, may be completely unrelated; if, however, λ1=0\lambda_1=0, then it must be simple and the corresponding one-dimensional eigenspace has to consist of the constant functions and to be a subset of the domain of definition of a certain fractional power of BB. We are able to show general existence, uniqueness, and regularity results for both these cases, as well as for both the viscous and the nonviscous system.Comment: 36 pages. Key words: fractional operators, Cahn-Hilliard systems, well-posedness, regularity of solution

    Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: a `deep quench' approach

    Get PDF
    In this paper, we investigate a distributed optimal control problem for a convective viscous Cahn-Hilliard system with dynamic boundary conditions. Such systems govern phase separation processes between two phases taking place in an incompressible fluid in a container and, at the same time, on the container boundary. The cost functional is of standard tracking type, while the control is exerted by the velocity of the fluid in the bulk. In this way, the coupling between the state (given by the associated order parameter and chemical potential) and control variables in the governing system of nonlinear partial differential equations is bilinear, which presents a difficulty for the analysis. In contrast to the previous paper arXiv:1709.02335 [math.AP] by the same authors, the bulk and surface free energies are of double obstacle type, which renders the state constraint nondifferentiable. It is well known that for such cases standard constraint qualifications are not satisfied so that standard methods do not apply to yield the existence of Lagrange multipliers. In this paper, we overcome this difficulty by taking advantage of results established in the quoted paper for logarithmic nonlinearities, using a so-called `deep quench approximation'. We derive results concerning the existence of optimal controls and the first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint system.Comment: Key words: Cahn-Hilliard system, convection term, dynamic boundary conditions, double obstacle potentials, optimal velocity control, optimality conditions. arXiv admin note: text overlap with arXiv:1702.0190

    On a Cahn-Hilliard system with convection and dynamic boundary conditions

    Get PDF
    This paper deals with an initial and boundary value problem for a system coupling equation and boundary condition both of Cahn-Hilliard type; an additional convective term with a forced velocity field, which could act as a control on the system, is also present in the equation. Either regular or singular potentials are admitted in the bulk and on the boundary. Both the viscous and pure Cahn-Hilliard cases are investigated, and a number of results is proven about existence of solutions, uniqueness, regularity, continuous dependence, uniform boundedness of solutions, strict separation property. A complete approximation of the problem, based on the regularization of maximal monotone graphs and the use of a Faedo-Galerkin scheme, is introduced and rigorously discussed.Comment: Key words: Cahn-Hilliard system, convection, dynamic boundary condition, initial-boundary value problem, well-posedness, regularity of solution

    Distributed optimal control of a nonstandard nonlocal phase field system

    Get PDF
    We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.Comment: 38 Pages. Key words: distributed optimal control, nonlinear phase field systems, nonlocal operators, first-order necessary optimality condition

    Singular limit of an integrodifferential system related to the entropy balance

    Full text link
    A thermodynamic model describing phase transitions with thermal memory, in terms of an entropy equation and a momentum balance for the microforces, is adressed. Convergence results and error estimates are proved for the related integrodifferential system of PDE as the sequence of memory kernels converges to a multiple of a Dirac delta, in a suitable sense.Comment: Key words: entropy equation, thermal memory, phase field model, nonlinear partial differential equations, asymptotics on the memory ter

    Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential

    Get PDF
    This paper is concerned with a distributed optimal control problem for a nonlocal phase field model of Cahn-Hilliard type, which is a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion. The local model has been investigated in a series of papers by P. Podio-Guidugli and the present authors; the nonlocal model studied here consists of a highly nonlinear parabolic equation coupled to an ordinary differential inclusion of subdifferential type. The inclusion originates from a free energy containing the indicator function of the interval in which the order parameter of the phase segregation attains its values. It also contains a nonlocal term modeling long-range interactions. Due to the strong nonlinear couplings between the state variables (which even involve products with time derivatives), the analysis of the state system is difficult. In addition, the presence of the differential inclusion is the reason that standard arguments of optimal control theory cannot be applied to guarantee the existence of Lagrange multipliers. In this paper, we employ recent results proved for smooth logarithmic potentials and perform a so-called `deep quench' approximation to establish existence and first-order necessary optimality conditions for the nonsmooth case of the double obstacle potential.Comment: Key words: distributed optimal control, phase field systems, double obstacle potentials, nonlocal operators, first-order necessary optimality conditions. The interested reader can also see the related preprints arXiv:1511.04361 and arXiv:1605.07801 whose results are recalled and used for the analysis carried out in this pape
    corecore