23 research outputs found

    HIV related risk behaviours among taxi drivers and their assistants in Addis Ababa, Ethiopia: descriptive cross-sectional survey

    Get PDF
    BACKGROUND: Risk taking behaviours in relation to HIV among the mobile population is a growing public health concern in many developing countries, including Ethiopia. The aim of this study was to describe risky sexual behaviours and associated factors among male taxi drivers and assistants in Addis Ababa. METHODS: A descriptive cross-sectional survey design with multistage cluster sampling procedure was employed to select 615 individuals for interview. RESULTS: Seventy six percent of the respondents were sexually active. Nearly 31% of the respondents reported casual sex and 7% of them did not use a condom with their most recent casual sex partner. More than half (58.5%) of the respondents had no condom use efficacy. Condom breakage and/or slippage during sex had been encountered by 44% of respondents with casual partners and sex during menstruation had ever occurred among 17% of respondents. Eleven percent had experienced sex with female sex workers. Thirty-three percent of the respondents were unfaithful to their spouse/steady partners. Multivariate analysis revealed that living with parents [AOR 95% CI; 2(1.14-3.60)], non-khat chewers [AOR 95% CI; 3.7(2.13-6.31)], never taken VCT [AOR 95% CI; 3.5(1.84-6.72)], middle-class monthly cash gain [AOR 95% CI; 0.5(0.25-0.98)] and more years of experience working on a taxi [AOR 95% CI; 0.17(0.60-0.47)] were statistically significant to influence lifetime abstinence. Non-khat chewers [AOR 95% CI; 0.53(0.37-0.78)], never taken VCT [AOR 95% CI; 0.54(0.36-0.88)] and higher monthly cash gain [AOR 95% CI; 2.9(1.14-7.19)] had a statistically significant association with condom use efficacy. Living with parents [AOR 95% CI; 2(1.31-3.72)], living with friends [AOR 95% CI; 6.4(3.13-12.89)] and non-khat chewers [AOR 95% CI; 2(1.34-3.53)] were risk factors found to be associated with faithfulness. CONCLUSIONS: Risky sexual behaviours in this sub-population were considerable and associated factors were found to be multidimensional. Therefore, there is a need for robust intervention strategies such as tailored serial radio program targeting taxi drivers and their assistants

    Soil organic carbon dynamics along chrono-sequence land-use systems in the highlands of Ethiopia

    Get PDF
    Soil organic carbon (SOC) dynamics along land-use changes influences the terrestrial and global carbon cycle, the climate, soil fertility, agricultural productivity, and food security. Taking soils under native forests as an appropriate ecological reference, we studied changes in soil organic carbon stock along eight land-use types in the highlands of Ethiopia. The general objective of the study was to investigate the dynamics of SOC stock following chrono-sequence land-use/cover systems in the highlands of Ethiopia. The specific objectives were to: (1) analyze loss due to land degradation; (2) analyze gain due to land restoration; and (3) estimate partial balance of SOC stock for the highlands of Ethiopia. The study followed the principle of the Forest Transition Theory (FTT). Eleven sub-areas were considered from the highlands of Ethiopia. A total of 241 auger composite samples from the topsoil (0−20 cm depth) were collected during December 2017 to June 2018, and analyzed at CropNut soil lab in Nairobi. The study results revealed that there were statistically significant variations (P < 0.05) across the land-use types with the mean stocks ranging from 31.4 Mg SOC ha−1 in soils of intensively grazed lands to 145.0 Mg SOC ha−1 in soils of guasa grasslands. Soils of natural/pristine vegetation and protected guasa grasslands contain the highest amount of SOC stock. Therefore, there should be more aggressive efforts towards an effective protection of these ecosystems. Soils under intensively used croplands and intensively grazed lands lost, respectively, 64.95% and 78.16%, SOC stocks originally accumulated in the top surface layers of the pristine forests. This points for the need to adopt locally feasible land management practices that lead to increased SOC stock and simultaneously reduced CO2 and greenhouse gas emissions from croplands and intensively grazed lands of the highlands of Ethiopia. Compared to stocks of SOC of intensively grazed lands (31.44 Mg SOC ha−1 ), the annual stock gains in soils of controlled grazing lands (4.60 Mg ha−1 ) were > gains in soils of enclosures (3.17 Mg ha−1 ) > gains in soils of afforestation (2.35 Mg SOC ha−1 ), which signifies that converting degraded lands to either controlled grazing lands, enclosures, or afforestation would be a promising practice for an enhanced carbon sequestration across the highlands of Ethiopia. This practice is in line with the United Nations’ Sustainable Development Goals. The estimated regional partial stock balance revealed that the loss and gain ratio was 35.1 in 1991, and it declined to 15.4 in 2001, 2.2 in 2011 and 1.8 in 2015. These decreasing ratios indicate the possibility of closing the gap between the losses and the gains in the near future, and eventually shifting to higher rates of gains than losses. It is also important to note that determined efforts towards the effective protection of natural forests and the creation of enclosures and reforestation areas by local communities for enhanced carbon sequestration will benefit them from payments of carbon emission reduction (CER) credits

    Characterizing and evaluating the impacts of national land restoration initiatives on ecosystem services in Ethiopia

    Get PDF
    Land restoration is considered to be the remedy for 21st century global challenges of land degradation. As a result, various land restoration and conservation efforts are underway at different scales. Ethiopia is one of the countries with huge investments in land restoration. Tremendous land management practices have been implemented across the country since the 1970s. However, the spatial distribution of the interventions has not been documented, and there is no systematic, quantitative evidence on whether land restoration efforts have achieved the restoration of desired ecosystem services. Therefore, we carried out a meta‐analysis of peer‐reviewed scientific literature related to land restoration efforts and their impacts in Ethiopia. Results show that most of the large‐scale projects have been implemented in the highlands, specifically in Tigray and Amhara regions covering about 24 agro‐ecological zones, and land restoration impact studies are mostly focused in the highlands but restricted in about 11 agro‐ecological zones. The highest mean effect on agricultural productivity is obtained from the combination of bunds and biological interventions followed by conservation agriculture practices with 170 % and 18% increases, respectively. However, bunds alone, biological intervention alone, and terracing (Fanya Juu) reveal negative effects on productivity. The mean effect of all land restoration interventions on soil organic carbon is positive, the highest effect being from “bunds + biological” (139%) followed by exclosure (90%). Reduced soil erosion and runoff are the dominant impacts of all interventions. The results can be used to improve existing guidelines to better match land restoration options with specific desired ecosystem functions and services. While the focus of this study was on the evaluation of the impacts of land restoration efforts on selected ecosystem services, impacts on livelihood and national socio‐economy have not been examined. Thus, strengthening socio‐economic studies at national scale to assess the sustainability of land restoration initiatives are an essential next step

    Data-driven similar response units for agricultural technology targeting: An example from Ethiopia

    Get PDF
    Ethiopia has heterogeneous topographic, climatic and socio-ecological systems. Recommendations of agricultural inputs and management practices based on coarse domains such as agro-ecological zones (AEZ) may not lead to accurate targeting, mainly due to large intra-zone variations. The lack of well-targeted recommendations may contribute to the underperformance of promising technologies. Therefore, there is a need to define units where similar environmental and biophysical features prevail, based on which specific recommendations can be made for similar response units (SRUs). We used unsupervised machine learning algorithms to identify areas of high similarity or homogeneous zones called ‘SRUs’ that can guide the targeting of agricultural technologies. SRUs are landscape entities defined by integrating relevant environmental covariates with the intention to identify areas of similar responses. Using environmental spatial data layers such as edaphic and ecological variables for delineation of the SRUs, we applied K- and X-means clustering techniques to generate various granular levels of zonation and define areas of high similarity. The results of the clustering were validated through expert consultation and by comparison with an existing operational AEZ map of Ethiopia. We also augmented validation of the heterogeneity of the SRUs by using field-based crop response to fertiliser application experimental data. The expert consultation highlighted that the SRUs can provide improved clustering of areas of high similarity for targeting interventions. Comparison with the AEZ map indicated that SRUs with the same number of AEZ units captured heterogeneity better with less within-cluster variability of the former. In addition, SRUs show lower within-cluster variability to optimal crop response to fertiliser application compared with AEZs with the same number of classes. This implies that the SRUs can be used for refined agricultural input and technology targeting. The work in this study also developed an operational framework that users can deploy to fetch data from the cloud and generate SRUs for their areas of interest

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of 'leaving no one behind', it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990-2017, projected indicators to 2030, and analysed global attainment. METHODS: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0-100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
    corecore