192 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Inositol (1,4,5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity

    No full text
    The mechanisms governing positive selection of T cells in the thymus are still incompletely understood. Here, we describe a N-ethyl-N-nitrosourea induced recessive mouse mutant, Ms. T-less, which lacks T cells in the peripheral blood because of a complete block of thymocyte development at the CD4(+)CD8(+) stage. Single nucleotide polymorphism mapping and candidate gene sequencing revealed a nonsense mutation in the inositol (1,4,5) trisphosphate 3 kinase B (Itpkb) gene in Ms. T-less mice. Accordingly, Ms. T-less thymocytes do not show detectable expression of Itpkb protein and have drastically reduced basal inositol (1,4,5) trisphosphate kinase activity. Itpkb converts inositol (1,4,5) trisphosphate to inositol (1,3,4,5) tetrakisphosphate, soluble second messengers that have been implicated in Ca(2+) signaling. Surprisingly, Ca(2+) responses show no significant differences between wild type (WT) and mutant thymocytes. However, extracellular signal-regulated kinase (Erk) activation in response to suboptimal antigen receptor stimulation is attenuated in Ms. T-less thymocytes, suggesting a role for Itpkb in linking T cell receptor signaling to efficient and sustained Erk activation

    Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV

    No full text
    Recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) is the most advanced Ebola virus vaccine candidate and is currently being used to combat the outbreak of Ebola virus disease (EVD) in the Democratic Republic of the Congo (DRC). Here we examine the humoral immune response in a subset of human volunteers enrolled in a phase 1 rVSV-ZEBOV vaccination trial by performing comprehensive single B cell and electron microscopy structure analyses. Four studied vaccinees show polyclonal, yet reproducible and convergent B cell responses with shared sequence characteristics. EBOV-targeting antibodies cross-react with other Ebolavirus species, and detailed epitope mapping revealed overlapping target epitopes with antibodies isolated from EVD survivors. Moreover, in all vaccinees, we detected highly potent EBOV-neutralizing antibodies with activities comparable or superior to the monoclonal antibodies currently used in clinical trials. These include antibodies combining the IGHV3-15/IGLV1-40 immunoglobulin gene segments that were identified in all investigated individuals. Our findings will help to evaluate and direct current and future vaccination strategies and offer opportunities for novel EVD therapies
    corecore