203 research outputs found

    PKB/SGK-resistant GSK-3 signaling following unilateral ureteral obstruction

    Get PDF
    Background/Aims: Renal tissue fibrosis contributes to the development of end-stage renal disease. Causes for renal tissue fibrosis include obstructive nephropathy. The development of renal fibrosis following unilateral ureteral obstruction (UUO) is blunted in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase SGK1. Similar to Akt isoforms, SGK1 phosphorylates and thus inactivates glycogen synthase kinase GSK-3. The present study explored whether PKB/SGK-dependent phoshorylation of GSK-3α/β impacts on pro-fibrotic signaling following UUO. Methods: UUO was induced in mice carrying a PKB/SGK-resistant GSK-3α/β (gsk-3KI) and corresponding wild-type mice (gsk-3WT). Three days after the obstructive injury, expression of fibrosis markers in kidney tissues was analyzed by quantitative RT-PCR and western blotting. Results: GSK-3α and GSK-3β phosphorylation was absent in both, the non-obstructed and the obstructed kidney tissues from gsk-3KI mice but was increased by UUO in kidney tissues from gsk-3WT mice. Expression of α-smooth muscle actin, type I collagen and type III collagen in the non-obstructed kidney tissues was not significantly different between gsk-3KI mice and gsk-3WT mice but was significantly less increased in the obstructed kidney tissues from gsk-3KI mice than from gsk-3WT mice. After UUO treatment, renal β-catenin protein abundance and renal expression of the β-catenin sensitive genes: c-Myc, Dkk1, Twist and Lef1 were again significantly less increased in kidney tissues from gsk-3KI mice than from gsk-3WT mice. Conclusions: PKB/SGK-dependent phosphorylation of glycogen synthase kinase GSK-3 contributes to the pro-fibrotic signaling leading to renal tissue fibrosis in obstructive nephropathy

    Functional Comparison of Induced Pluripotent Stem Cell- and Blood-Derived GPIIbIIIa Deficient Platelets

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application

    Binding site number variation and high-affinity binding consensus of Myb-SANT-like transcription factor Adf-1 in Drosophilidae

    Get PDF
    There is a growing interest in the evolution of transcription factor binding sites and corresponding functional change of transcriptional regulation. In this context, we have examined the structural changes of the ADF-1 binding sites at the Adh promoters of Drosophila funebris and D. virilis. We detected an expanded footprinted region in D. funebris that contains various adjacent binding sites with different binding affinities. ADF-1 was described to direct sequence-specific DNA binding to sites consisting of the multiple trinucleotide repeat . The ADF-1 recognition sites with high binding affinity differ from this trinucleotide repeat consensus sequence and a new consensus sequence is proposed for the high-affinity ADF-1 binding sites. In vitro transcription experiments with the D. funebris and D. virilis ADF-1 binding regions revealed that stronger ADF-1 binding to the expanded D. funebris ADF-1 binding region only moderately lead to increased transcriptional activity of the Adh gene. The potential of this regional expansion is discussed in the context of different ADF-1 cellular concentrations and maintenance of the ADF-1 stimulus. Altogether, evolutionary change of ADF-1 binding regions involves both, rearrangements of complex binding site cluster and also nucleotide substitutions within sites that lead to different binding affinities

    Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’

    Get PDF
    Abstract The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for high-mass diphoton resonances in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This article describes a search for high-mass resonances decaying to a pair of photons using a sample of 20.3  fb−¹ of pp collisions at √s = 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of 2.66 (1.41) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of k/M̄Pl=0.1(0.01)

    Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √snn = 5.02 TeV p + Pb collisions measured by the ATLAS experiment

    Get PDF
    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p + Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √snn = 5.02 TeV. Charged particles are reconstructed over pseudorapidity | η | < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb − 1. The results are presented in the form of charged-particle nuclear modification factors, where the p + Pb charged-particle multiplicities are compared between central and peripheral p + Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p + Pb collision centrality is characterized by the total transverse energy measured in − 4.9 < η < − 3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p + Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus
    corecore