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Abstract 
Background/Aims: SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative 
stress-responsive kinase 1), kinases controlled by WNK (with-no-K[Lys] kinase), are powerful 
regulators of cellular ion transport and blood pressure. Observations in gene-targeted mice 
disclosed an impact of SPAK/OSR1 on phosphate metabolism. The present study thus tested 
whether SPAK and/or OSR1 contributes to the regulation of the intestinal Na+-coupled 
phosphate co-transporter NaPi-IIb (SLC34A2). Methods: cRNA encoding NaPi-IIb was injected 
into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type 
SPAK, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, 
wild-type OSR1, constitutively active T185EOSR1, WNK insensitive T185AOSR1 or catalytically inactive 
D164AOSR1. The phosphate (1 mM)-induced inward current (IPi) was taken as measure of phosphate 
transport. Results: IPi was observed in NaPi-IIb expressing oocytes but not in water injected 
oocytes, and was significantly increased by co-expression of SPAK, T233ESPAK, OSR1, T185EOSR1 or 
SPAK+OSR1, but not by co-expression of T233ASPAK, D212ASPAK, T185AOSR1, or D164AOSR1. SPAK and 
OSR1 both increased the maximal transport rate of the carrier. Conclusions: SPAK and OSR1 are 
powerful stimulators of the intestinal Na+-coupled phosphate co-transporter NaPi-IIb.
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Introduction

SPAK (SPS1-related proline/alanine-rich kinase) [1-3] and OSR1 (oxidative stress-
responsive kinase 1) [4, 5] are both powerful regulators of epithelial ion transport and blood 
pressure [6]. The kinases are phosphorylated by WNK (with-no-K[Lys] kinases) [1, 7-10], 
which similarly contribute to the regulation of ion transport and blood pressure [9-17]. 
SPAK and OSR1 stimulate NaCl (NCC) and Na+,K+,2Cl- (NKCC) co-transporters [4-8, 11, 18-
26] as well as a number of ion channels [27-30]. SPAK/OSR1 are expressed in intestine [31]. 
Intestinal SPAK/OSR1 are both phosphorylated by treatment with forskolin, an activator of 
adenylate cyclase [31]. SPAK deficiency is followed by a decrease in paracellular permeability 
and partial resistance to inflammatory bowel disease [32]. SPAK transcription is stimulated 
by the transcription factors NF-kappaB and Sp1 [33]. Activators of SPAK include angiotensin 
II [34, 35], which upregulates the expression of the renal phosphate transporter NaPi-IIa 
[36]. OSR1 has similarly been shown to stimulate the renal phosphate transporter NaPi-IIa 
[37]. Along those lines gene targeted mice expressing WNK-resistant SPAK [38] or OSR1 [37] 
display subtle alterations of phosphate metabolism. 

Nothing is known, however, on a putative influence of SPAK or OSR1 on the type II Na+-
coupled phosphate co-transporter NaPi-IIb (SLC34A2), the transporter accomplishing intestinal 
transport of inorganic phosphate [39]. NaPi-IIb is primarily expressed in small intestine [39]. 
Mutations in the SLC34A2 gene may be associated with accumulation of phosphate in lung 
with development of pulmonary alveolar microlithiasis [40]. SLC34A2 is further expressed 
in the epididymis and presumably participates in the fine tuning of luminal phosphate 
concentration [41]. Moreover, SLC34A2 expression was observed in ovarian, papillary 
thyroid and breast cancer [42-44]. 

The present study explored, whether SPAK and/or OSR1 participates in the regulation of 
NaPi-IIb. To this end, NaPi-IIb was expressed in Xenopus oocytes without or with additional 
expression of the kinases. The phosphate induced current was determined by dual electrode 
voltage clamp and taken as a measure of phosphate transport. 

Materials and Methods

Ethical Statement
All experiments conform with the 'European Convention for the Protection of Vertebrate Animals used for 

Experimental and other Scientific Purposes' (Council of Europe No 123, Strasbourg 1985) and were conducted 
according to the German law for the welfare of animals and the surgical procedures on the adult Xenopus laevis 
frogs were reviewed and approved by the respective government authority of the state Baden-Württemberg 
(Regierungspräsidium) prior to the start of the study (Anzeige für Organentnahme nach §36).

Constructs
Constructs encoding human wild-type NaPi-IIb (SLC34A2) [45], human wild-type SPAK/pGHJ, 

constitutively active T233ESPAK/pGHJ, WNK insensitive T233ASPAK/pGHJ, catalytically inactive D212ASPAK/pGHJ 
[7], human wild-type OSR1/pGHJ, constitutively active T185EOSR1/pGHJ, WNK insensitive T185AOSR1/pGHJ and 
catalytically inactive D164AOSR1/pGHJ [37], were used to generate cRNA as described previously [46, 47]. The 
constructs were a kind gift from Dario Alessi (University of Dundee).

Voltage clamp in Xenopus laevis oocytes
Xenopus oocytes were prepared as previously described [48, 49]. 15 ng cRNA encoding NaPi-IIb and 

10 ng of cRNA encoding wild-type, constitutively active or inactive kinase were injected on the same day 
after preparation of the oocytes. The oocytes were maintained at 17°C in ND96, a solution containing (in 
mM): 88.5 NaCl, 2 KCl, 1 MgC12, 1.8 CaC12, 2.5 NaOH, 5 HEPES, 5 sodium pyruvate (C3H3NaO3), Gentamycin 
(100 mg/l), Tetracycline (50 mg/l), Ciprofloxacin (1.6 mg/l), Theophiline (90 mg/l) and pH 7.4 [50, 51]. 
The voltage clamp experiments were performed at room temperature 4 days after the first injection [47, 
52]. Phosphate induced currents were taken as a measure of phosphate transport at a holding potential of 

http://dx.doi.org/10.1159%2F000368531
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-60mV [53, 54]. The data were filtered at 10 Hz and recorded with a Digidata A/D-D/A converter (1322A 
Axon Instruments) and Clampex 9.2 software for data acquisition and analysis (Axon Instruments) [55-
57]. The control superfusate (ND96) contained (in mM): 93.5 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 2.5 NaOH and 
5 HEPES, pH 7.4. The flow rate of the superfusion was approx. 20 ml/min, and a complete exchange of the 
bath solution was reached within about 10 s [58-60]. For kinetic analysis the phosphate induced-current 
(IPi) was plotted against the respective phosphate concentration(s) and maximal current (Imax) as well as 
concentration required for halfmaximal current (km) calculated using the equation IPi = Imax∙s/(km + s).

Statistical analysis
Data are provided as means ± SEM, n represents the number of oocytes investigated. As different batches 

of oocytes may yield different results, comparisons were always made within a given oocyte batch. All voltage 
clamp experiments were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data 
were obtained. Data were tested for significance using ANOVA or the unpaired student’s t-test, as appropriate. 
Results with p < 0.05 were considered statistically significant. 

Results

The present study addressed whether the electrogenic phosphate transporter NaPi-IIb 
is regulated by the kinases SPAK (SPS1-related proline/alanine-rich kinase) and/or OSR1 
(oxidative stress-responsive kinase 1). To this end, cRNA encoding NaPi-IIb was injected 
into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type 
or mutant SPAK or OSR1. Dual electrode voltage clamp experiments were performed to 
quantify the phosphate-induced inward current (IPi) as a measure of electrogenic phosphate 
transport. As illustrated in Fig. 1, IPi was negligible in water-injected oocytes indicating that 
the oocytes did not express appreciable endogenous electrogenic phosphate transport. IPi 
was further negligible in oocytes expressing SPAK alone. In NaPi-IIb expressing Xenopus 
laevis oocytes, however, addition of phosphate (1 mM) to the bath solution was followed 
by appearance of a sizable IPi. The co-expression of wild-type SPAK in NaPi-IIb expressing 
Xenopus laevis oocytes was followed by a significant increase of IPi. 

In order to test, whether SPAK co-expression modifies the maximal IPi and/or the affinity 
of the carrier, Xenopus laevis oocytes expressing NaPi-IIb without or with co-expression of 

Fig. 1. Co-expression of SPAK in-
creases electrogenic phosphate 
transport in NaPi-IIb expressing 
Xenopus laevis oocytes. A: Repre-
sentative original tracings show-
ing phosphate (1 mM)-induced 
current (IPi) in Xenopus laevis 
oocytes injected with water (a), 
expressing wild-type SPAK alone 
(b), or expressing NaPi-IIb with-
out (c) or with (d) additional 
coexpression of wild-type SPAK 
(dashed line indicates zero cur-
rent). B: Arithmetic means ± 
SEM (n = 9-16) of IPi in Xenopus 
laevis oocytes injected with water 
(white bar), SPAK alone (dotted 
bar), or expressing NaPi-IIb with-
out (black bar) or with (grey bar) wild-type SPAK. ***(p<0.001) indicates statistically significant difference 
from the absence of SPAK.

http://dx.doi.org/10.1159%2F000368531
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SPAK were exposed to phosphate concentrations ranging from 0.1 mM to 4 mM. As shown 
in Fig. 2, IPi increased as a function of the extracellular phosphate concentration. Maximal IPi 
was significantly (p<0.001) higher in Xenopus laevis oocytes expressing NaPi-IIb together 
with SPAK (20.6 ± 1.1 nA, n = 6) than in Xenopus laevis oocytes expressing NaPi-IIb alone 
(8.9 ± 0.3 nA, n = 6). The concentration required for half maximal IPi (Km) was significantly 
(p<0.05) higher in Xenopus laevis oocytes expressing NaPi-IIb together with SPAK (361 ± 
66 µM, n = 6) than in Xenopus laevis oocytes expressing NaPi-IIb alone (193 ± 26 µM, n = 6). 

Additional experiments were performed in Xenopus laevis oocytes expressing NaPi-
IIb without or with SPAK mutants. As illustrated in Fig. 3, the effect of wild-type SPAK was 
mimicked by the constitutively active T233ESPAK but neither by the WNK insensitive T233ASPAK 
nor by the catalytically inactive D212ASPAK. 

Similar experiments were performed to elucidate the effect of OSR1 on NaPi-IIb activity. 
As illustrated in Fig. 4, co-expression of wild-type OSR1 was followed by a significant increase 
of IPi in NaPi-IIb expressing Xenopus oocytes.

Further experiments again explored, whether OSR1 co-expression modifies the maximal 
IPi and/or the affinity of the carrier, As shown in Fig. 5, the maximal phosphate induced 
current was again significantly (p<0.001) higher in Xenopus laevis oocytes expressing NaPi-
IIb together with OSR1 (14.9 ± 1.1 nA, n = 6) than in Xenopus laevis oocytes expressing 
NaPi-IIb alone (6.8 ± 0.1 nA, n = 6). The concentration required for half maximal IPi (Km) 
was significantly (p<0.05) higher in Xenopus laevis oocytes expressing NaPi-IIb together with 
OSR1 (338 ± 92 µM, n = 6) than in Xenopus laevis oocytes expressing NaPi-IIb alone (119 ± 
11 µM, n = 6). 

Addtitional experiments were performed in Xenopus laevis oocytes expressing NaPi-
IIb without or with OSR1 mutants. As a result, the effect of wild-type OSR1 was mimicked 
by constitutively active T185EOSR1 but neither by the WNK insensitive T185AOSR1 nor by the 
catalytically inactive D164AOSR1 (Fig. 6).

A final series of experiments explored the effect of simultaneous co-expression of SPAK and 
OSR1 on IPi. As a result, the electrogenic current in NaPi-IIb expressing Xenopus laevis oocytes 
tended to be slightly higher in oocytes co-expressing both, SPAK and OSR1 together than 
in oocytes co-expressing either SPAK or OSR1 alone. However, the difference of IPi between 
oocytes co-expressing both, SPAK and OSR1, and the co-expressing either SPAK or OSR1 
alone did not reach statistical significance (Fig. 7).

Fig. 2. Co-expression of SPAK in-
creases maximal electrogenic phos-
phate transport in NaPi-IIb express-
ing Xenopus laevis oocytes. A: Repre-
sentative original tracings showing 
the current induced by increasing 
concentrations of phosphate (from 
0.1 mM to 4 mM) in Xenopus laevis 
oocytes expressing Napi-IIb without 
(upper panel) or with (lower panel) 
additional coexpression of wild-type 
SPAK (dashed line indicates zero 
current). B: Arithmetic means ± SEM 
(n = 6) of IPi as a function of Loga-
rithmic phosphate concentrations 
in Xenopus laevis oocytes expressing 
NaPi-IIb without (white circles), or 
with (black circles) additional co-ex-
pression of wild-type SPAK.

http://dx.doi.org/10.1159%2F000368531
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Discussion

The present study reveals that SPAK (SPS1-related proline/alanine-rich kinase) and 
OSR1 (oxidative stress-responsive kinase 1) are both powerful positive regulators of the 
intestinal phosphate transporter NaPi-IIb. Co-expression of either SPAK or OSR1 increases 
the phosphate-induced inward current (IPi) in NaPi-IIb expressing oocytes. SPAK and OSR1 
are both effective in large part by increase of the maximal transport rate. Co-expression of the 
kinases decreased the apparent affinity of NaPi-IIb. The simultaneous co-expression of both 
kinases SPAK and OSR1 does not show an additive effect. This outcome could be explained by 
the expression of SPAK and OSR1 in different cells relative to the same tissue or organ. Similar 
to wild type SPAK, constitutively active T233ESPAK increases the phoshpate induced current 

Fig. 3. The effect of SPAK is mim-
icked by active T233ESPAK but not by 
inactive mutants T233ASPAK or D212AS-
PAK. A: Representative original trac-
ings showing phosphate (1 mM) in-
duced current (IPi) in Xenopus laevis 
oocytes injected with water (a), ex-
pressing NaPi-IIb alone (b) or with 
additional co-expression of constitu-
tively active T233ESPAK (c), WNK1 in-
sensitive T233ASPAK (d), or catalytical-
ly inactive D212ASPAK (e) (dashed line 
indicates zero current). B: Arithme-
tic means ± SEM (n = 9–12) of IPi in 
Xenopus laevis oocytes injected with 
water (white bar), or expressing Na-
Pi-IIb without (black bar) or with 
constitutively active T233ESPAK (light 
grey bar), WNK insensitive T233ASPAK (middle grey bar), or catalytically inactive D212ASPAK (dark grey bar). 
***(p<0.001) indicates statistically significant difference from oocytes expressing NaPi-IIb alone. 

Fig. 4. Co-expression of OSR1 in-
creases electrogenic phosphate 
transport in NaPi-IIb expressing 
Xenopus laevis oocytes. A: Repre-
sentative original tracings showing 
phosphate (1 mM) induced current 
(IPi) in Xenopus laevis oocytes inject-
ed with water (a), expressing OSR1 
alone (b), or expressing NaPi-IIb 
without (c) or with (d) additional 
co-expression of wild-type OSR1 
(dashed line indicates zero current).  
B: Arithmetic means ± SEM (n = 
9-17) of IPi in Xenopus laevis oocytes 
injected with water (white bar), ex-
pressing OSR1 alone (dotted bar), or 
expressing NaPi-IIb without (black 
bar) or with (grey bar) wild-type OSR1. *** (p<0.001) indicates statistically significant difference from the 
absence of OSR1.

http://dx.doi.org/10.1159%2F000368531
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in NaPi-IIb expressing Xenopus oocytes. In contrast, neither the WNK insensitive T233ASPAK 
nor the catalytically inactive D212ASPAK significantly modified the phosphate induced current. 
The effect of wild type OSR1 is similarly mimicked by the constitutively active T185EOSR1, but 
not by WNK insensitive T185AOSR1 or by the catalytically inactive D164AOSR1. These observations 
suggest that SPAK and OSR1 are activated by phosphorylation at the WNK phosphorylation 
site and that they are effective by phosphorylating target molecules. The observations do, 
however, not necessarily reflect direct phosphorylation of the NaPi-IIb carrier protein by 
SPAK and OSR1. Instead, the kinases might phosphorylate and thus modify the function of 
other NaPi-IIb regulating signaling molecules. Kinases previously shown to participate in 
the regulation of NaPi-IIb activity include AMP activated kinase (AMPK) [61], B-RAF [45], 
serum & glucocorticoid inducible kinase SGK1 [62], and mammalian target of rapamycin 
(mTOR) [63].

Fig. 5. Co-expression of OSR1 de-
creases maximal electrogenic phos-
phate transport in NaPi-IIb-express-
ing Xenopus laevis oocytes. A: Repre-
sentative original tracings showing 
the current induced by increasing 
concentrations of phosphate (from 
0.1 mM to 4 mM) in Xenopus laevis 
oocytes expressing Napi-IIb without 
(upper panel) or with (lower panel) 
additional co-expression of wild-
type OSR1 (dashed line indicates 
zero current). B: Arithmetic means ± 
SEM (n = 6) of IPi as a function of log-
arithmic phosphate concentrations 
in Xenopus laevis oocytes expressing 
Napi-IIb without (white circles), or 

Fig. 6. The effect of OSR1 is mim-
icked by active T185EOSR1 but not by 
inactive mutants T185AOSR1 or D164A-

OSR1. A: Representative original 
tracings showing phosphate (1 mM) 
induced current (IPi) in Xenopus 
laevis oocytes injected with water 
(a), expressing NaPi-IIb alone (b) 
or with additional co-expression of 
constitutively active T185EOSR1 (c), 
WNK1 insensitive T185AOSR1 (d) or 
catalytically inactive D164AOSR1 (e) 
(dashed line indicates zero current). 
B: Arithmetic means ± SEM (n = 
9-12) of IPi in Xenopus laevis oocytes 
injected with water (white bar) ex-
pressing NaPi-IIb without (black bar) or with constitutively active T185EOSR1 (light grey bar), WNK insensitive 
T185AOSR1 (middle grey bar), or catalytically inactive D164AOSR1 (dark grey bar). ***(p<0.001) indicates statis-
tically significant difference from oocytes expressing NaPi-IIb alone. 

with (black circles) additional co-expression of wild-type OSR1.
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In view of the regulation of NaPi-IIb by SPAK and OSR1, the two kinases contribute 
to the orchestration of phosphate metabolism. Observations in gene targeted mice indeed 
reveal that SPAK [38] and OSR1 [37] affect phosphate metabolism and OSR1 modifies Napi-
IIa activity expressed in the proximal tubule of the nephron [37]. However, the effects of 
SPAK [38] and OSR1 [37] on phosphate metabolism are not limited to regulation of NaPi-IIa 
and NaPi-IIb. 

SPAK and OSR1 foster cellular KCl uptake by stimulating NaCl co-transporters and 
Na+,K+,2Cl- co-transporters and by inhibiting KCl co-transporters [4-8, 11, 18-26], effects 
leading to cell swelling [64-66]. Stimulation of Na+ coupled phosphate transport is similarly 
expected to increase cell volume, as it leads to cellular uptake of Na+ and phosphate as well as 
to depolarisation of the cell membrane, which favours entry of negatively charged chloride. 
Due to the low transport rate and the limited availability of phosphate in extracellular fluid, 
activation of NaPi-IIb is, however, not expected to rapidly swell cells.  

	

Conclusion

NaPi-IIb is markedly up-regulated by the kinases SPAK and OSR1, an effect presumably 
contributing to the orchestration of phosphate metabolism. 
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Fig. 7. Electrogenic phosphate 
transport following co-expression 
of both SPAK and OSR1 in NaPi-IIb 
expressing Xenopus laevis oocytes. 
A: Representative original tracings 
showing phosphate (1 mM) induced 
current (IPi) in Xenopus laevis oo-
cytes injected with water (a), ex-
pressing NaPi-IIb alone (b) or with 
additional co-expression of wild 
type OSR1 (c), or wild type SPAK 
(d), or wild type OSR1 and SPAK (e) 
(dashed line indicates zero current). 
B: Arithmetic means ± SEM (n = 
9-16) of IPi in Xenopus laevis oocytes 
injected with water (white bar), or 
expressing NaPi-IIb without (black bar) or with wild type OSR1 (light grey bar), or with  wild type SPAK 
(light grey bar), or  OSR1+SPAK (dark grey bar). ***(p<0.001) indicates statistically significant difference 
from oocytes expressing NaPi-IIb alone. 
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