195 research outputs found

    The role of the pion cloud in the interpretation of the valence light-cone wavefunction of the nucleon

    Get PDF
    The pion cloud renormalises the light-cone wavefunction of the nucleon which is measured in hard, exclusive photon-nucleon reactions. We discuss the leading twist contributions to high-energy exclusive reactions taking into account both the pion cloud and perturbative QCD physics. The nucleon's electromagnetic form-factor at high Q2Q^2 is proportional to the bare nucleon probability ZZ and the cross-sections for hard (real at large angle or deeply virtual) Compton scattering are proportional to Z2Z^2. Our present knowledge of the pion-nucleon system is consistent with Z=0.7±0.2Z = 0.7 \pm 0.2. If we apply just perturbative QCD to extract a light-cone wavefunction directly from these hard exclusive cross-sections, then the light-cone wavefunction that we extract measures the three valence quarks partially screened by the pion cloud of the nucleon. We discuss how this pion cloud renormalisation effect might be understood at the quark level in terms of the (in-)stability of the perturbative Dirac vacuum in low energy QCD.Comment: Expanded Discussion of Phenomenology and Spin Physic

    Construct validity of a continuous metabolic syndrome score in children

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The primary purpose of this study was to examine the construct validity of a continuous metabolic syndrome score (cMetS) in children. The secondary purpose was to identify a cutpoint value(s) for an adverse cMetS based on receiver operating characteristic (ROC) curve analysis.</p> <p>Methods</p> <p>378 children aged 7 to 9 years were assessed for the metabolic syndrome which was determined by age-modified cutpoints. High-density-lipoprotein cholesterol, triglycerides, the homeostasis assessment model of insulin resistance, mean arterial pressure, and waist circumference were used to create a cMetS for each subject.</p> <p>Results</p> <p>About half of the subjects did not possess any risk factors while about 5% possessed the metabolic syndrome. There was a graded relationship between the cMetS and the number of adverse risk factors. The cMetS was lowest in the group with no adverse risk factors (-1.59 ± 1.76) and highest in those possessing the metabolic syndrome (≥3 risk factors) (7.05 ± 2.73). The cutoff level yielding the maximal sensitivity and specificity for predicting the presence of the metabolic syndrome was a cMetS of 3.72 (sensitivity = 100%, specificity = 93.9%, and the area of the curve = 0.978 (0.957-0.990, 95% confidence intervals).</p> <p>Conclusion</p> <p>The results demonstrate the construct validity for the cMetS in children. Since there are several drawbacks to identifying a single cut-point value for the cMetS based on this sample, we urge researchers to use the approach herein to validate and create a cMetS that is specific to their study population.</p

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Linear and non-linear flow mode in Pb-Pb collisions at root sNN=2.76 TeV

    Get PDF
    The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| <0.8 and the transverse momentum range 0.2 <p(T)<5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system. (C) 2017 The Author(s). Published by Elsevier B.V.Peer reviewe

    D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions root S-NN=5.02 TeV

    Get PDF
    The azimuthal anisotropy coefficient v(2) of prompt D-0, D+, D*+, and D-s(+) mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN)=5.02 TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, |y| < 0.8, in the transverse momentum interval 1 < p(T) < 24 GeV/c. The measured D-meson v(2) has similar values as that of charged pions. The D-s(+) v(2), measured for the first time, is found to be compatible with that of nonstrange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.Peer reviewe

    Production of muons from heavy-flavour hadron decays in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The production of muons from heavy-flavour hadron decays in p-Pb collisions at root s(NN) = 5.02 TeV was studied for 2 <p(T) <16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03 <y(cms) <3.53 and -4.46 <y(cms) <-2.96, respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum (P-T). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5 <p(T) <3.5 GeV/c, it is above unity by more than 2 sigma. The ratio of the forward -to -backward production cross sections is also measured in the overlapping interval 2.96 <|y(cms)| <3.53 and is smaller than unity by 3.7 sigma in 2.5 <p(T) <3.5 GeV/c. The data are described by model calculations including cold nuclear matter effects. (C) 2017 The Author(s). Published by Elsevier B.V.Peer reviewe

    Production of deuterons, tritons, He-3 nuclei, and their antinuclei in pp collisions at root s=0.9, 2.76, and 7 TeV

    Get PDF
    Invariant differential yields of deuterons and antideuterons in pp collisions at root s = 0.9, 2.76 and 7 TeV and the yields of tritons, He-3 nuclei, and their antinuclei at root s = 7 TeV have been measured with the ALICE detector at the CERN Large Hadron Collider. The measurements cover a wide transverse momentum (p(T)) range in the rapidity interval vertical bar y vertical bar <0.5, extending both the energy and the pT reach of previous measurements up to 3 GeV/c for A = 2 and 6 GeV/c for A = 3. The coalescence parameters of (anti) deuterons and 3 He nuclei exhibit an increasing trend with pT and are found to be compatible with measurements in pA collisions at low p(T) and lower energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one (anti) nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle multiplicity at different center-of-mass energies.Peer reviewe
    corecore