49 research outputs found

    A fast sparse block circulant matrix vector product

    Full text link
    In the context of computed tomography (CT), iterative image reconstruction techniques are gaining attention because high-quality images are becoming computationally feasible. They involve the solution of large systems of equations, whose cost is dominated by the sparse matrix vector product (SpMV). Our work considers the case of the sparse matrices being block circulant, which arises when taking advantage of the rotational symmetry in the tomographic system. Besides the straightforward storage saving, we exploit the circulant structure to rewrite the poor-performance SpMVs into a high-performance product between sparse and dense matrices. This paper describes the implementations developed for multi-core CPUs and GPUs, and presents experimental results with typical CT matrices. The presented approach is up to ten times faster than without exploiting the circulant structure.Romero Alcalde, E.; Tomás Domínguez, AE.; Soriano Asensi, A.; Blanquer Espert, I. (2014). A fast sparse block circulant matrix vector product. En Euro-Par 2014 Parallel Processing. Springer. 548-559. doi:10.1007/978-3-319-09873-9_46S548559Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari, C.A., Pal, X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam ct. Physics in Medicine and Biology 55, 6575–6599 (2010)Dalton, S., Bell, N.: CUSP: A C++ templated sparse matrix library version 0.4.0 (2014), http://cusplibrary.github.com/Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the Optical Society of America 1, 612–619 (1984)Ganine, V., Legrand, M., Michalska, H., Pierre, C.: A sparse preconditioned iterative method for vibration analysis of geometrically mistuned bladed disks. Computers & Structures 87(5-6), 342–354 (2009)Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iterative reconstruction technique for reducing body radiation dose at CT: Feasibility study. American Journal of Roentgenology 193, 764–771 (2009)Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels. International Journal of High Performance Computing Applications 18(1), 135–158 (2004)Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001), http://www.scipy.org/Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration analysis of cyclically repetitive structures. Acta Mechanica 217(1-2), 51–62 (2011)Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multiplication using index and value compression. In: Proceedings of the 5th Conference on Computing Frontiers, CF 2008, pp. 87–96. ACM, New York (2008)Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix–vector product on scalar multi-core CPUs. Parallel Computing 36(4), 181–198 (2010)Lee, B., Vuduc, R., Demmel, J., Yelick, K.: Performance models for evaluation and automatic tuning of symmetric sparse matrix-vector multiply. In: International Conference on Parallel Processing, ICPP 2004, vol. 1, pp. 169–176 (2004)Leroux, J.D., Selivanov, V., Fontaine, R., Lecomte, R.: Accelerated iterative image reconstruction methods based on block-circulant system matrix derived from a cylindrical image representation. In: Nuclear Science Symposium Conference Record, NSS 2007, vol. 4, pp. 2764–2771. IEEE (2007)NVIDIA: CUSPARSE library (2014), https://developer.nvidia.com/cusparsePan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 123009 (2008)Rodríguez-Alvarez, M.J., Soriano, A., Iborra, A., Sánchez, F., González, A.J., Conde, P., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.: Expectation maximization (EM) algorithms using polar symmetries for computed tomography CT image reconstruction. Computers in Biology and Medicine 43(8), 1053–1061 (2013)Sheep, L., Vardi, Y.: Maximum likelihood reconstruction for emmision tomography. IEEE Transactions on Medical Imaging 1, 113–122 (1982)Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in Medicine and Biology 53, 4777–4807 (2008)Soriano, A., Rodríguez-Alvarez, M.J., Iborra, A., Sánchez, F., Carles, M., Conde, P., González, A.J., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.: EM tomographic image reconstruction using polar voxels. Journal of Instrumentation 8, C01004 (2013)Thibaudeau, C., Leroux, J.D., Pratte, J.F., Fontaine, R., Lecomte, R.: Cylindrical and spherical ray-tracing for ct iterative reconstruction. In: 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 4378–4381 (2011)Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2005)Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 807–816. Springer, Heidelberg (2005)Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Computing 35(3), 178–194 (2009

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Functionally oriented analysis of cardiometabolic traits in a trans-ethnic sample

    Get PDF
    Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA sequence data in samples drawn from European-Ancestry and African-Ancestry populations and identified substantial predictive power using European-derived models in a non-European target population.We then tested the association of GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses. Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based imputation models for discovery of cardiometabolic effect genes in a diverse dataset

    FSI Simulations on Vector Systems — Development of a Linear Iterative Solver (BLIS)

    No full text

    Linear Iterative Solver for NEC Parallel Vector Systems

    No full text

    Notwendige Beweglichkeit von Zahnimplantaten und konstruktive Loesungsmoeglichkeiten

    No full text
    SIGLETIB: RN 1909 (1981,1)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore