24 research outputs found

    Mélanome anorectal primitive

    Get PDF
    Nous proposons une étude rétrospective réalisée au sein du département de gastro-entérologie et d'Oncologie du CHU Casablanca colligeant tous les cas des mélanomes ano-rectaux primitifs, sur une période de 15 ans (du 1997 au 2012). Notre série comportait 14 patients, 8 hommes et 6 femmes avec une moyenne d'âge de 60,5 ans. Les signes cliniques étaient dominés par les rectorragies et le syndrome rectal (plus de 80% des malades). L'aspect tumoral noirâtre à été noté chez la moitié des malades. L'examen endoscopique a révélé une prédominance des lésions ulcérobourgeonnantes. Dans 5 cas la tumeur était plus haut située entre 5 à 8 cm de la marge anale. Le bilan d'extension avait décelé des métastases ganglionnaires, osseuses ou viscérales chez 7 malades. Un traitement chirurgical a été pratiqué chez 50% des malades (7 cas). Il a consisté en une exérèse locale isolée (2 cas) ou associée à une radiothérapie (2 cas) et une amputation abdomino-périnéale dans 3 cas. Quatre malades ont reçu une chimiothérapie et/ou radiothérapie palliative et dans deux cas on s'est contenté d'un traitement symptomatique. L'évolution a été marquée par une récidive chez les 2 patients traités par exérèse locale, dont un a été bénéficié d'une amputation abdomino-pelvienne de rattrapage et un des trois patients traités par chirurgie radicale. Deux patients sont en rémission complète après 36 mois de recul.Keywords: Mélanome anorectal, diagnostic, traitement, pronosti

    Maternal outcomes and risk factors for COVID-19 severity among pregnant women.

    Get PDF
    Pregnant women may be at higher risk of severe complications associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may lead to obstetrical complications. We performed a case control study comparing pregnant women with severe coronavirus disease 19 (cases) to pregnant women with a milder form (controls) enrolled in the COVI-Preg international registry cohort between March 24 and July 26, 2020. Risk factors for severity, obstetrical and immediate neonatal outcomes were assessed. A total of 926 pregnant women with a positive test for SARS-CoV-2 were included, among which 92 (9.9%) presented with severe COVID-19 disease. Risk factors for severe maternal outcomes were pulmonary comorbidities [aOR 4.3, 95% CI 1.9-9.5], hypertensive disorders [aOR 2.7, 95% CI 1.0-7.0] and diabetes [aOR2.2, 95% CI 1.1-4.5]. Pregnant women with severe maternal outcomes were at higher risk of caesarean section [70.7% (n = 53/75)], preterm delivery [62.7% (n = 32/51)] and newborns requiring admission to the neonatal intensive care unit [41.3% (n = 31/75)]. In this study, several risk factors for developing severe complications of SARS-CoV-2 infection among pregnant women were identified including pulmonary comorbidities, hypertensive disorders and diabetes. Obstetrical and neonatal outcomes appear to be influenced by the severity of maternal disease

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link

    Bioactive Compounds and Antioxidant, Antiperoxidative, and Antihemolytic Properties Investigation of Three Apiaceae Species Grown in the Southeast of Morocco

    No full text
    For a long time, Apiaceae species have been widely employed in the southeast of Morocco for culinary and folk healing purposes. In the current study, we investigated three Apiaceae herbs known as coriander (Coriandrum sativum), celery (Apium graveolens), and parsley (Petroselinum crispum) for their antioxidant, antiperoxidative, and antihemolytic properties. The HPLC-DAD has been used to classify and measure phenolic compounds. The major phenolic compounds studied were p-coumaric, chlorogenic, caffeic acids, luteolin, and quercetin. The polyphenol level was also estimated via Folin–Ciocalteu’s method, aluminium chloride, and acidified vanillin. Parsley showed the highest polyphenol level and, thus, showed potential antioxidant activities demonstrated by DPPH, ABTS scavenging tests, and reducing power (FRAP), as well as TBARS assays. Very strong correlations were depicted among phenol levels and antioxidant assays (R2 ≥ 0.910) and among antihemolytic activity and flavonoids (R2 ≥ 0.927), indicating the implication of phenolic compounds, mainly flavonoids, in the antiradical properties. These finding may prove the traditional use of these Apiaceae species in the management of numerous disorders cited within the Moroccan pharmacopoeia

    A Novel DPC Approach for DFIG-Based Variable Speed Wind Power Systems Using DSpace

    No full text
    The integration of wind energy systems into the electric grid has become inevitable despite the many problems associated with this integration. Most of these problems are due to variations in wind speed. The problems are for example oscillations in the power generated, which implies the lack of guarantee of obtaining the maximum energy and the ripple in the electromechanical torque of the generator. This work aims at mitigating these problems for wind energy conversion system-driven doubly-fed induction generator (DFIG), which is the main wind turbine utilized for energy applications. This mitigation is performed through direct reactive and active powers control of the DFIG using an artificial neural network. A DSP (Digital Signal Processor-dSPACE DS1104) was used to experimentally test the proposed strategy. The dynamic performances of the controlled generator are analyzed by using the designed intelligent control strategy in the case of variable wind speeds and upon sudden change of the active power demand. Based on the obtained experimental results, it can be said that the designed intelligent control strategy outperforms traditional methods like direct power (DPC) and vector control in terms of reducing the current harmonics, and torque ripples, and enhancing dynamic response

    Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile

    No full text
    Wind speed variations affect the performance of the wind energy conversion systems (WECSs) negatively. This paper addressed an advanced law of the backstepping controller (ABC) for enhancing the integration of doubly fed induction generator (DFIG)-based grid-connected WECS under wind range of wind speed. This enhancement was achieved through three control schemes, which were blade pitch control, rotor-side control, and grid-side control. The blade pitch control was presented to adjust the wind turbine speed when the wind speed exceeds its rated value. In addition, the rotor and grid-side converter controllers were presented for improving the direct current link voltage profile and achieving maximum power point tracking (MPPT) under speed variations, respectively. To evaluate the effectiveness of the proposed ABC control, a comparison between PI and sliding-mode control (SMC) was presented, considering the parameters of a 1.5 MW DFIG wind turbine in the Assilah zone in Morocco. Moreover, some changes in the DFIG parameters were introduced to investigate the robustness of the proposed controller under parameter uncertainties. Simulation results showed the capability of the proposed ABC controller to enhance the performance of the DFIG-WECS based on variable speed and variable pitch turbine, at both below and above-rated speed, leading to an error around 10−3 (p.u), with an ATE = 0.4194 in the partial load region; in terms of blade pitch control, an error of 2.10−4 (p.u) was obtained, and the DC-link voltage profile showed a measured performance of 5 V and remarkable THD value reduction compared to other techniques, with a measured THD value of 2.03%, 1.67%, and 1.46% respectively, in hyposynchronous, hypersynchronous, and pitch activation modes of operation. All simulations were performed using MATLAB/SIMULINK based on real wind profiles in order to make an exhaustive analysis with realistic operating conditions and parameters

    Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties.

    No full text
    International audienceHomopolymer grafts from α-tert-butoxy-ω-vinylbenzyl-polyglycidol (PGL) were prepared on gold and stainless steel (SS) substrates modified by 4-benzoyl-phenyl (BP) moieties derived from the electroreduction of the parent salt 4-benzoyl benzene diazonium tetrafluoroborate. The grafted BP aryl groups efficiently served to surface-initiate photopolymerization (SIPP) of PGL. In similar conditions, SIPP of hydroxyethyl methacrylate (HEMA) permitted the production of PHEMA grafts as model surfaces. Water contact angles were found to be 66°, 15°, and 0° for SS-BP, SS-PHEMA, and SS-PPGL, respectively. The spontaneous spreading of water drops on SS-PPGL was invariably observed with 1.5 μL water drops. PPGL thus appears as a superhydrophilic polymer. Resistance to nonspecific adsorption of proteins of PPGL and PHEMA grafts on gold was evaluated by surface plasmon resonance (SPR) using antibovine serum albumin (anti-BSA). The results conclusively show that PPGL-grafts exhibit enhanced resistance to anti-BSA adsorption compared to the well-known hydrophilic PHEMA. PPGL grafts were further modified with BSA through the carbonyldiimidazole activation of the OH groups providing immunosensing surfaces. The so-prepared PPGL-grafted BSA hybrids specifically interacted with anti-BSA in PBS as compared to antimyoglobin. It is clear that the superhydrophilic character of PPGL grafts opens new avenues for biomedical applications where surfaces with dual functionality, namely, specific protein grafting together with resistance to biofouling, are required
    corecore