23 research outputs found

    Young neutron stars with soft gamma ray emission and anomalous X-ray pulsar

    Full text link
    The observational properties of Soft Gamma Repeaters and Ano\-malous X-ray Pulsars (SGR/AXP) indicate to necessity of the energy source different from a rotational energy of a neutron star. The model, where the source of the energy is connected with a magnetic field dissipation in a highly magnetized neutron star (magnetar) is analyzed. Some observational inconsistencies are indicated for this interpretation. The alternative energy source, connected with the nuclear energy of superheavy nuclei stored in the nonequilibrium layer of low mass neutron star is discussed.Comment: 29 pages, 13 figures, Springer International Publishing Switzerland 2016 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernova

    The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z=0.27

    Get PDF
    We present ZTF18abvkwla (the "Koala"), a fast blue optical transient discovered in the Zwicky Transient Facility (ZTF) One-Day Cadence (1DC) Survey. ZTF18abvkwla has a number of features in common with the groundbreaking transient AT 2018cow: blue colors at peak (gr0.5g-r\approx -0.5 mag), a short rise time from half-max of under two days, a decay time to half-max of only three days, a high optical luminosity (Mg,peak20.6{M}_{g,\mathrm{peak}}\approx -20.6 mag), a hot (gsim40,000 K) featureless spectrum at peak light, and a luminous radio counterpart. At late times (Δt>80days{\rm{\Delta }}t\gt 80\,\mathrm{days}), the radio luminosity of ZTF18abvkwla (νLν1040ergs1\nu {L}_{\nu }\gtrsim {10}^{40}\,\mathrm{erg}\,{{\rm{s}}}^{-1} at 10 GHz\mathrm{GHz}, observer-frame) is most similar to that of long-duration gamma-ray bursts (GRBs). The host galaxy is a dwarf starburst galaxy (M5×108MM\approx 5\times {10}^{8}\,{M}_{\odot }, SFR7Myr1\mathrm{SFR}\approx 7\,{M}_{\odot }\,{\mathrm{yr}}^{-1}) that is moderately metal-enriched (log[O/H]8.5\mathrm{log}[{\rm{O}}/{\rm{H}}]\approx 8.5), similar to the hosts of GRBs and superluminous supernovae. As in AT2018cow, the radio and optical emission in ZTF18abvkwla likely arise from two separate components: the radio from fast-moving ejecta (Γβc>0.38c{\rm{\Gamma }}\beta c\gt 0.38c) and the optical from shock-interaction with confined dense material (<0.07 M ⊙ in 1015cm\sim {10}^{15}\,\mathrm{cm}). Compiling transients in the literature with trise<5days{t}_{\mathrm{rise}}\lt 5\,\mathrm{days} and Mpeak<20{M}_{\mathrm{peak}}\lt -20 mag, we find that a significant number are engine-powered, and suggest that the high peak optical luminosity is directly related to the presence of this engine. From 18 months of the 1DC survey, we find that transients in this rise-luminosity phase space are at least two to three orders of magnitude less common than CC SNe. Finally, we discuss strategies for identifying such events with future facilities like the Large Synoptic Survey Telescope, as well as prospects for detecting accompanying X-ray and radio emission

    European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment

    Get PDF
    To develop a European guideline on pharmacologic treatment of Tourette syndrome (TS) the available literature was thoroughly screened and extensively discussed by a working group of the European Society for the Study of Tourette syndrome (ESSTS). Although there are many more studies on pharmacotherapy of TS than on behavioral treatment options, only a limited number of studies meets rigorous quality criteria. Therefore, we have devised a two-stage approach. First, we present the highest level of evidence by reporting the findings of existing Cochrane reviews in this field. Subsequently, we provide the first comprehensive overview of all reports on pharmacological treatment options for TS through a MEDLINE, PubMed, and EMBASE search for all studies that document the effect of pharmacological treatment of TS and other tic disorders between 1970 and November 2010. We present a summary of the current consensus on pharmacological treatment options for TS in Europe to guide the clinician in daily practice. This summary is, however, rather a status quo of a clinically helpful but merely low evidence guideline, mainly driven by expert experience and opinion, since rigorous experimental studies are scarce

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Measurement of ZZ production in leptonic final states at {\surd}s of 1.96 TeV at CDF

    Full text link
    In this paper we present a precise measurement of the total ZZ production cross section in pp collisions at {\surd}s= 1.96 TeV, using data collected with the CDF II detector corresponding to an integrated luminosity of approximately 6 fb-1. The result is obtained by combining separate measurements in the four-charged (lll'l'), and two-charged-lepton and two-neutral-lepton (llvv) decay modes of the Z. The combined measured cross section for pp {\to} ZZ is 1.64^(+0.44)_(-0.38) pb. This is the most precise measurement of the ZZ production cross section in 1.96 TeV pp collisions to date.Comment: submitted to Phys. Rev. Let

    A blast from the infant Universe: The very high- z GRB 210905A

    Get PDF
    We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z=6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus-Wind, we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.270.19+0.20- 1054 erg, GRB 210905A lies in the top 7% of gamma-ray bursts (GRBs) in the Konus-Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at 46.2 16.3 d (6.3±2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z>6 known to date. By assuming a number density n=1 cm3 and an efficiency η=0.2, we derived a half-opening angle of 8.4±1.0, which is the highest ever measured for a z6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of 1- 1052 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift

    Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 102Mc2{10}^{-2}{M}_{\odot }{c}^{2} were emitted within the 1616500500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 5454 Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle 30\leqslant 30^\circ , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Analysis of hard X- and gamma-rays and microwave emissions during the flare of July 18, 2002

    No full text
    The Nobeyama Radioheliograph observation results and data from the KONUS-Wind spectrometer mounted at the Wind and RHESSI satellites on several solar flares are jointly analyzed. The analysis results for data on the flare of July 18, 2002 are described. The hard X-rays were measured in the 18 keV-15 MeV range (KONUS-Wind), and spectroheliograph measurements were carried out in the radio range at frequencies of 17 and 34 GHz. Spatial distributions of the radio brightness were calculated for the flare of July 18, 2002; they show the presence of two sources at the footpoints and one source at the top of the supposed flaring loop. The energy spectra of hard X-rays, energy flux, and the total number of accelerated electrons were found from the KONUS spectrometer data. The number of accelerated X-ray emitted electrons was estimated as N a parts per thousand yen 10(36), and the maximum X-ray energy flux was estimated as 5 x 10(-6) erg cm(-2) s(-1). The spectrum index varies in time from -4.6 to -3.6, i.e., the soft-hard-harder trend is implemented. The spectral index of the radio waves is alpha a parts per thousand -0.3 at the flare start, attains the value alpha a parts per thousand -0.5 at the flux maximum, and even change the sign further. The accelerated electron transport model in the flare loop plasma is suggested for interpretation of relationships between parameters of the radio emission and hard X-rays
    corecore